

Solar cooling in hot humid climates

Stephen White October 2017

ENERGY FLAGSHIP www.csiro.au

Solar cooling

Using solar radiation to drive a cooling process.

Displacing the use of fossil fuel derived electricity that would otherwise be used in a conventional vapour compression airconditioner.

- \checkmark Solar thermal heat driving a thermal cooling process
- Solar photovoltaics driving a conventional vapour compression cooling process

Cooling Demand Matches Solar Availability

IEA Roadmap vision of solar heating and cooling (2012)

Solar cooling accounts for ~17% of TFE cooling in 2050

Why solar cooling?

Policy perspective

- Reduce greenhouse gas emissions
- Lower energy costs

Building owner perspective

- Asset value
- Reduce energy costs
- Government mechanism (compliance or incentive)

Solar thermal technology options

(By heat source temperature)

Air Collectors

Desert Mountain High School, USA

42 (kW/kW)/ 0

25-30 (kW/KW)/

Solar Panels: 5,000 m² → 3.5 MW Cooling load: 500 tons / 1750 kW In operation since 2014

Results after 15 months of operation:

- Chiller COP_{thermal} 0,7 0,75
- Peak Hour up to COP_{electric}
- Full day up to COPs_{electric}

(on days when full load has been used)

Ten Key Principles

- Good applications have vear round load (integrated systems) and don't try to do 100% of building cooling demand
- Careful design is required to minimise heat loss and parasitic electricity, and ensure robust operation at part load

Solar Heating and Cooling

New Research?

Separate PV and AC (grid acting as buffer) vs Connected PV and AC (off-grid/ self consumption)?

Is this "Solar Airconditioning" **O** "Solar AND Airconditioning"?

Potential benefits (beyond simple energy savings)

	Electricity system benefit	Consumer benefit	Disadvantages
100% off grid solar PV/AC with separate AC backup	 Reduced peak demand No reverse power flow Safety Voltage Slow ramp rates 	 Residential: leave it permanently on = guilt free luxury Commercial Solar cooling efficiency increase at part load I don't need to inform my electricity utility 	 Wasted electricity if airconditioning is not required Needs batteries to manage fluctuations
100% Solar PV self consumption with grid backup	 Reduced peak demand No reverse power flow 	I don't need to inform my electricity utility	Wasted electricity if airconditioning is not required
Solar PV self consumption with grid export/import	Reduced peak demand	Get full value for electricity	Lack of advantages

Conclusions

- Solar cooling makes intuitive supply/demand sense and <u>should reduce electricity peak demand</u>
- Significant experience in solar <u>thermal</u> cooling has demonstrated technical potential and marginal commercial viability. In the absence of "plug and play" potential, prefer
 - Large systems
 - Integrated heating and cooling systems
- Solar <u>PV electricity</u> systems are emerging on the market but products need to be tailored to electricity utility needs

Thank you

Energy Technology Stephen White Energy Efficiency Leader

- t +61 2 4960 6070
- e stephen.d.white@csiro.au
- w www.csiro.au

ENERGY TECHNOLOGY www.csiro.au

Generic flow-sheet for matching an intermittent heat source and a variable demand for cooling

