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1. Introduction

In western countries, households account for apprately thirty per cent of the total energy
consumption. In order to reduce the energy consiomjir buildings, effort has been put in research
on and development of more energy efficient teobgies and buildings, especially during the last
decades. Effort has also been placed on encourdgingeholds to purchase more energy efficient
technologies.

The physical aspects related to the energy consompft buildings, such as the building envelope,
building installations and climate, are well undecsl. However in practice, there is often a sigaifit
discrepancy between the designed and the realeogayy use in buildings.

Monitoring studies for identical dwellings havinget same type of installations have shown great
variation in energy use. See for example Figure W#fich shows the variation in heating energy for
identical dwellings having the same installations.
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Figure 1-1: Variation in energy use in identical eNings for three different projects. See Ref. [1].

The three curves in Figure 1-1 represent the hgatirergy use for three different types of dwellihgs
installation at three locations in The Netherlandee Ref. [1]. For example, the single family
buildings represented by the red curve display @pprately a fourfold difference in heating energy
use. The other curves show an even greater variatibeating energy use. This variation in energy
use is in this case in a large extent related ¢obtthavior of the occupants of the dwellings, since
identical buildings and installations having thensaenergy efficiency have been considered in this



study. Similar findings on the effect of occupaehbvior have been reported by other authors in the
literature, see e.g. Refs. [2] and [3].

Ref. [3] reports on a study of 1000 quite similasidential buildings in a suburb of Copenhagen,
which in spite of their similarity show huge vaitat in energy consumption. The study has also been
reported in Ref. [4]. The comparison of heatingrgpeuse for completely identical houses showed
that households using the greatest heating enesggt a three time more heating energy than the
households using the least energy for heating efamtricity use, an even larger variation was fqund
households using the greatest electricity used tiimes as much as the households using the least
electricity.

Energy-related occupant behavior as meant in #psrt is related to observable actions or reactions
of a person in response to external or internaldtj or respectively actions or reactions of asper

to adapt to ambient environmental conditions sushemperature, indoor air quality and sunlight.
Occupant behavior related to the heating energycaseerns for example the temperature set point,
the number of rooms that are heated, the heatiragidn, and window opening/closing.

Energy use in modern dwellings may show an inckasesitivity to occupant behavior. For example,
for very well insulated dwellings the relative irase of heating energy use is quite sensitiveetaeh
point temperature chosen by the occupant, seed-iyar
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Figure 1-2: Increased sensitivity of heating enefgyset point behavior. See Ref [5].

The increase of heating energy of a very well iasd dwelling as a function of the set point
temperature is displayed in Figure 1-2. Increasirgset point with one degree, from 20°C to 21°C,
results in a 19% increase of the heating energis @&ample demonstrates the sensitivity of energy
use in residential buildings to energy-related pecu behavior.

For modern dwellings with increased air tightnele, occupant behavior can have a larger effect on
the air change rate and consequently the energguogption of the dwelling. As the requirements for



energy use in buildings are tightened in natioma mternational regulations, knowledge of physical
aspects of energy efficiency is being implementedew residential and office buildings. In order to
fulfill the high expectations for energy savingsbimildings in the future, better understanding oWh
energy-related occupant behavior influences bugldémergy consumption is required. The above
examples of the effect of occupant behavior on @nese and the sensitivity to occupant behavior
illustrate the importance of acquiring more knowgedon energy-related occupant behavior for
understanding and realistically predicting the Iltataergy use in present and future residential
buildings and for adapting future building techrgyldo occupant behavior.

In the framework of the IEA ECBCS Annex 53 projectal energy use in buildings and the role of
occupant behavior are being investigated. Aspeota hatural sciences as well as social sciences are
related to the energy use in buildings and are esseéd in the project. This chapter contains
categorization of the most relevant types of eneedgted occupant behavior for residential building

In addition, the influencing parameters, referrecsdriving forces for the various types of energy-
related occupant behavior will be identified insthterature review based chapter.

Quantitative modeling approaches for describinggneelated occupant behavior and energy use in
residential buildings are discussed in the secdrapter Total energy use in residential buildings -
the modeling of occupant behaviour”.



2. Driving forces of energy-related behavior

Energy use in residential buildings is influenced the behavior of occupants in various ways.
Energy-related occupant behavior as meant in #psert is related to observable actions or reactions
of a person in response to external or internatidtj or respectively actions or reactions of asper

to adapt to ambient environmental conditions (sasttemperature, indoor air quality and sunlight),
household and other activities. These actions atidities are driven by various factors.

The influence of occupant behavior on the energyinsbuildings has been investigated in various
domains such as natural sciences, social scieaoes.economics. Many investigations in natural

science publications focus on (statistical) relatidbetween energy-related behavior and mostly
physical parameters influencing this behavior, sashoutdoor temperature, indoor temperature and
solar radiation. Examples are given in Ref. [6] &. [7].

Various research fields have different foci or riegments for occupant behavior. Determination and
regulation of occupant behavior are the foci ini@oar physiological science. In natural (or build)
science, more attention is paid to the quantitati@scription of occupant behavior based on physical
parameters (upper part of Figure 1-3).

However, there is no well-defined relation betwegdysical parameters and control actions such as
outdoor temperature and window opening. In reatity,occupant decides to open or close a window
and the decision is based on a number of influgnparameters that can be categorized as physical,
biological, and psychological, as well as sociag (interaction between occupants) to name a few. Th
lower part of Figure 1-3 illustrates parametertuieficing the occupant and his behavior.
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Figure 1-3: Parameters influencing occupant behavio

Psychological

This complex relationship between occupants anid ém¥ironment is elaborated further in Figure 1-4.
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Figure 1-4: Driving forces of energy-related occapéehavior.

This scheme is based on the presence of an occapanspecific time at a specific location having
access to specific building controls. Occupantserpce a specific physical environment due torthei
location, biological, and psychological states, bpdhe interaction with their environment.

Information about occupant presence and activitieg/ be obtained from time-use surveys and
occupancy sensing. The interaction between hunanklings, and building control systems result
from a combination of influencing parameters, froow on referred to adriving forces These
driving forces can be regarded iagernal and externaldriving forces, see Ref. [8] and Ref. [9] for
examples. The internal and external driving foroegnergy-related occupant behavior as shown in
Figure 1-4 are ordered according to the followirdgegories:biological, psychological social and
time, building and building equipment propertjggysical environment (indoor and outdoor)

2.1 Internal driving forces

The first three types of driving forces of energjated behavior armternal driving forces of the
occupantpiological, psychological, and socjednd are depicted on the left side of Figure These
are being investigated in the domain of social rems, economics, and biology. There is strong
interaction between biological and psychologicalpesss, resulting in disciplines such as
biopsychology and psychophysiology. Health can diesiered as a biopsychosocial unit combining
biological, psychological and social elements. fgator drinking habits are strongly influenced by
cultural aspects. Thus, strict differentiation bedw these driving forces is difficult to handleskort
section on behavioral thermoregulation represeram@terface between biological and psychological
driving forces with thermal comfort-related intetiaos with heating, cooling, ventilating, and windo
opening is included.

Biological driving forces:

Examples of biological driving forces are age, gandhealth condition, activity level, hunger, and
thirst. These factors together determine the plygical condition of the occupant.

Psychological driving forces:
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Occupants tend to satisfy their needs concerniagmal, visual, and acoustic comfort requirements,

along with health and safety, to name a few. Funtioee, occupants may have certain expectations of
e.g. the indoor environmental quality (such as terafure). Other examples of psychological driving

forces are awareness (e.g. financial and envirotaheancerns), cognitive resources (e.g. knowledge)
habits, lifestyle, perceptions, emotions, and e#fitacy (e.g. environmental control).

Behavioral thermoregulation: Apart from autonomdaislogical processes, there is a variety of

deliberate regulation options which are listed beléddequate behavioral thermoregulation can be
considered result of learning processes, experseraral/or culturally-driven factors.

1. Clothing: relevant in hot as well as in cold climatonditions, adequate clothing fosters
reducing convection;

2. Thirst as the deliberate regulation of hydratioraisrucial issue in people being in need for
care or old persons drinking too little (this is gfpecial interest regarding demographic
change);

Use of external sources for convection or thernealth

4. Looking for places which, which are more convenieng. shade, areas with more or less
natural convection;

Sleep (siesta) as an option to reduce metabolicgneduction;

6. Acclimatization: the process by which an individbalcomes physiologically, behavioral, and
psychologically adjusted to the temperature of #wironment. This is of importance
regarding the degree by which the individual tdlesaactual sensitized temperatures
especially when it comes to extreme and unfamilianates; acclimatization can be a result of
repeated exposure to hot climates.

Social driving forces:

Social driving forces refer to the interaction beén humans. For example for residential buildings,
this depends on household composition which iselihko the primary decision maker in the
household, i.e. which household member determimeshtermostat set point or the opening/closing of
windows.

w

o

2.2 External driving forces

The external driving forces depicted at the right-hand sideFajure 1-4 building and building
equipment properties, physical environment, ana)tirare being investigated in the field of natural
(or building) science.

Building and building equipment properties:

Examples of building and building equipment projgasrtare the insulation level of buildings,
orientation of facades, heating system type, aednribstat type (e.g. manual or programmable), to
name a few.

Physical environment:
Examples of physical environment aspects that drerergy-related occupant behavior are
temperature, humidity, air velocity, noise, illuration, and indoor air quality.

Time:

Examples of this type of driving forces that affeaergy-relates occupant behavior are season of the
year, week or weekend day, time of the day.
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2.3 Energy-related occupant behavior

The energy-related occupant behavior block in Edu# refers to actions and activities relatechto t
categoriedheating, cooling, ventilation and window operatiodlomestic hot water, electric appliances
/ lighting, and cookingThese categories are briefly introduced undemaid are discussed in greater
detail in the subsequent sections of this chapter.

1) Heating:

The activities of occupants have become more imapbnvithin energy efficient buildings. Studies
have shown that user behavior and lifestyle caaca#nergy consumption by up to a factor of three.
Occupant behavior related to heating concerns teahpe set point, number of heated rooms, heating
duration, gender, age, expectations, knowledgemwtrol function and meteorological conditions.

2) Cooling:

Depending on the type of system, occupant behé#ngsra significant influence on the use of cooling.
From the general to the detailed, this starts imes@ases with the choice of cooling system, the
duration and frequency of usage, the choice ofpeett temperatures, and the frequency of
maintenance.

3) Ventilation and window operation:

Investigations on window opening behavior and ratuentilation have mainly been carried out with

two aims: to find whether or not occupants are led with adequate fresh air and to find the

influence on energy consumption. The former categirstudies has usually been carried out in
dwellings and has a health or a comfort perspectitdle the latter category has mostly been studied
in offices with a comfort and energy performancerspective. Occupant behavior concerns
mechanical ventilation operation, natural ventilatinlet operation, window opening or closing.

4) Domestic hot water:

Occupant behavior can significantly influence tise of hot water in residential buildings. Examples
of energy-related occupant behavior related to ddiméiot water use are the frequency of taking a
shower, duration and intensity of showers; freqyent taking a bath; frequency of sink use;
frequency and temperature of washing machines ehaveshers, and efficiency of water usage.

5) Electric appliances / lighting:

The use of electric appliances and lighting indesces is strongly influenced by occupant behavior.
When the energy consumptions for appliances anditig are considered, large variations are found,
which partly relates back to socioeconomic pararsesech as income, persons per household, age,
education etc. The number of appliances and tmeirgy efficiency, as well as the usage frequency
and duration determine the energy use.

12



6) Cooking:

Many different appliances can be used for cookimgpses, such as microwave ovens, ovens, stoves,
pressure cookers, kettles, etc. The type of equipmesed and their corresponding energy
consumption as well as the number of meals prepailedetermine energy use for cooking.

Energy-related occupant behavior may be use, psectm building maintenance related. The effects
of energy-related occupant behavior (e.g. buildiogitrol actions) on residential energy use and
indoor environmental quality may be calculated dqiatively using building simulation software
packages.

In this chapter, the driving forces for the aboventioned categories of energy-related occupant
behavior will be identified based on a literatuesiew and will be discussed in greater detail i@ th
following sections. Quantitative modeling approacfar describing energy-related occupant behavior
and energy use are discussed in the second chHapmital energy use in residential buildings - the
modeling of occupant behaviour”.

The notation used in the summary tables in theespuEnt sections to indicate the importance of these
driving forces is explained in . The coding systmrbased on a range varying form very highly
significant to not significant, based on investigas in the literature.

Table 1-1: Notation used for importance of drivifayces; the p-value refers to the statistical
significance level.

I mportance

Description Symbo
Very highly significant (§0.001)

Highly significant (0.01)

Moderately significant (10.05)

Lowly significant (50.1)

**
*

Not significant
Not stated X

13



3. Heating

The activities of occupants have become more imponvithin buildings when considering heating
energy use in energy use predictions. Studies Bagwn that user behavior and lifestyle can affect
energy consumption by up to a factor of three, taged in Ref. [2, 3]. Firsthand data about user
behavior has been collected in various studieerQfecondary factors combine to affect the settpoi
temperature and heating schedule of a building.

Low-energy, passive house, and zero energy (inofuénergy autarkic) buildings, are designed to
minimize the heating load to supply only the regdiheat when occupants are present that cannot
otherwise be gained through passive solar andniatdreat gains. Studies have found that improving
the efficiency of the building envelope and builglisystems significantly reduces overall energy
consumption, thus increasing the importance ofrtte or actions of the occupant, Refs. [10, 11].
How the set-point temperature is determined, threetating factors for temperature, and the overall
operation of the heating system must also be utw®tto define the driving forces for energy-retate
behavior for heating.

In well insulated buildings the heating demandffeaed by the effect of missing solar gain in case
shading devices are a present, Ref [12]. In thisreace a part of the occupants lower the blinds
before leaving the residential building in the mogr Reviewing the literature on the use of sun
shading devices in a residential environment ditl nreveal a substantial amount of publications
regarding the topic of occupant behavior

3.1 I dentification of driving forces

The adaptive principle is based upon the assumigtiah “if a change occurs such as to produce
discomfort, people react in ways which tend toaestheir comfort”, see Ref. [13]. When the godls o
thermal comfort and energy savings conflict, it Heeen found that occupants make decisions
regarding their own comfort that may have a negatiffect on overall energy consumption.

As low energy houses have higher air tightnessthednal insulation, and use balanced mechanical
ventilation with heat recovery, occupant behaviecdimes less dependent upon environmental and
building/building system factors. Internal factstgch as clothing and activity levels, perceivedord
environmental quality (IEQ), and established hal@specially window opening and ventilation, have
greater effect on the overall heating energy comgiom than set point temperatures.

3.1.1 Biological

Temperature set-point:
Night setback temperatures are shown to have aifisart impact on room heating energy
consumption partially due to the large variancereferred sleeping temperatures, see Ref. [14].

Number of occupants:
Household size has been found to be significaRah [14].

Which rooms ar e heated:

14



The effect of partial heating in single-family hesson estimating total energy use was studied in
Ref. [15], and indicated that estimations were aighan actual consumption due to different heating
habits for different rooms. Ref. [14] found thae thumber of heated bedrooms had a large influence
on energy use.

Gender:

In Fanger’'s experiments using two test groups @farsity students in Denmark and the USA and a
test group of older, retirement-aged people, it feasd that men preferred a warmer environment,
but the findings were not statistically significafi%), see Ref. [16]. Fanger compared various
literature studies and found that women are monsiiee to changes in temperature, but the results
were inconclusive with some studies concluding tivetmen preferred higher temperatures, while
other studies showed that men preferred highereeayres. The effect of gender was also questioned
by Ref. [2]; the questionnaire results illustratadtrend that women desired higher set-point
temperatures than men. The questionnaire was hbliggd to a Danish population sample in
Copenhagen twice. There were 933and 636 responétentee first and second groups distributed
four months apart in September to October 2006 tlagnl in February to March 2007.

Karjalainen cited in Ref. [2], found that women wenore dissatisfied with room temperatures than
men, and preferred higher set-point temperatureghé same study, it was also found that men
controlled the set-point temperatures more oftan thomen.

Age
Ref. [14] has found that heating energy consumpgtioreases with age.

Clothing:

Of the factors that influence behavior, a pattetas viound where inhabitants decided their daily
clothing level based on the exterior weather camlt at 6 a.m. and made little alterations to the
clothing level afterwards. However, exterior weatbenditions were not the only influential factors.
As occupants spend more than 90% of the time irgjadimate parameters as defined by Fanger
determine their subjective wellbeing. Many studies/e been conducted about clothing levels in
relation to various activities such as work, shagpiand leisure at home Refs. [17], [18], and [19].
Ref. [19] finds that people actively change thdaotling at home corresponding with Andersen’s
residential questionnaire results finding that kilog adjustment was the main adaptive action,
Andersen Ref. [2]. The laboratory tests by Fangdrch used the same clothing ensemble for all
experimental groups [5], is disproven in the opinaf Keul et al., as social, cultural, and historic
aspects must also be considered, Ref. [19].

3.1.2 Psychological

Expectations:

Ref. [20] looked at the perceived winter occupamhifort and indoor air quality in low energy brick
residences in Vienna and Salzburg. Amongst the itapb factors listed, were the occupants’
expectations. Previous studies to the type of cacujm low energy residences have shown that they
do not have a propensity to high energy consemvaliehavior, but rather are within the social
mainstream of tenants and owners. Ref. [20] hasdothat training occupants about the new
technologies and correction of incorrect heating sson after moving-in are very important for

15



maintaining high satisfaction with living quality ilow energy houses. Media discussions about
climate change also influence quality assessmentfiausing preferences as stated in Ref. [3].

The subjective perceptions of occupants have aksen bfound to be influenced by occupant
thermometer and hygrometer readings. The studydh RO0] involved 20 Viennese participants
divided into three test groups who made diary olz@ns every three hours for 14 days:

7 residents who noted in a diary the subjectivepenature and humidity perceptions, assessments,
behavior, and measurements from data loggers;

11 residents who noted in a diary the subjectivgperature and humidity assessments, behavior, and
measurements from their own thermometers and hyepens (which had an accuracy of +3°C,
and +6% to -28% respectively);

2 residents who noted in a diary the subjectivepnature and humidity assessments without any
measurement devices.

The questionnaire results by all households iratieatment building (117 households) showed higher
dissatisfaction for both winter temperature andnmobumidity when occupants had their own

thermometers and hygrometers.

Table 1-2: Residents’ satisfaction with room terapare and room humidity.

Satisfaction with temperature Satisfaction withmohumidity
Residents with data loggers 94% 68%
Residents with their own 73% 12%
thermometers and hygrometers
Residents without any devices 84% 43%

As the winter air supplied in passive houses coniynoainges between 30% and 45% RH, it is
understandable that the satisfaction was so lothéntest group with their own hygrometers. The
humidity would likely show a range hovering belo@22 RH.

Refs. [21] and [22] as cited by Refs. [15] and [depectively, mention an “economic rebound effect”
whereby occupant expectations and heating enemgynagseases with higher comfort levels achieved
by thermal renovations, resulting in achieving oalyartial potential of cost and energy savings.

Under standing of how controls function:

Several authors see Refs. [23], [24], [25] and ,[2@lve conducted studies that have determined that
many users do not understand how to use thermastdishermostatic radiator valve (TRV) controls
properly. Ref. [26] also found that overheatingurced as a result of misunderstanding the operation
of TRV’'s. Ref. [2] concludes that users’ TRV comtdecisions are habit-based and misconceptions
are widespread. The frequency by which occupantdrao heating coupled with the depth of
understanding how the heating functions suggestsralation with the energy used for heating.

The combination of training and changing habitselda®n incorrect information can have a
widespread positive effect, as misunderstandingrigeaontrols has been shown to exist for different

16



heating control types and in different countriesrirthe works of Refs. [23], [24] and [25] as shawn
Ref. [2]. Questionnaire results in Belgium by R@6], also find a large number of occupants who
have poor understanding of heating controls, leadinimproper use, working against advances in
energy efficiencies. The concept of heating ovee thentilation system has found to be
counterintuitive for laypeople, and training haarid to also be important to correct false theoeas,
only occupants are needed to heat a passive heatd20].

Interaction frequency with heating controls:

In Ref. [2], many studies into establishing setapdemperature using TRV’'s have been conducted.
The studies of Ref. [27] found that individual helislds have constant heating set-point temperatures
that vary from each other, and Ref. [28] has qoastire results that indicate that there is large
variance in the frequency a user decides to cotitedt environment.

Memory:

Morgan and de Dear state that outdoor exposure thenprevious day influences clothing selection
upon waking, Ref. [18]. Weather conditions from fhrevious day also influence the current day’s
adjustments made to heating; either set-point teatpee or degree of heating valve opening.

3.1.3 Social

Owner ship (owning/cooper ative/renting):

The results of two questionnaire surveys in Austriecd33 and 636 participants showed that solar
radiation, type of housing ownership, and perceptd indoor environmental values were factors
affecting heating use, see Ref. [2]. Ref. [29] 4bd] also acknowledge the importance of home
ownership on domestic energy use, indicating thatenenergy is used when energy costs are shared
collectively in the rent.

Ref. [20] investigates the differences between aw(@mndominiums) and cooperative apartments
within the same apartment complex. The investigaias carried out in Salzburg, and similarly

compared data logger readings, occupants’ own thmeters and hygrometers, self-recorded diary
entries and interviews. An empty apartment was klgged as a reference point. The results of a
satisfaction survey are in Table 1-3.

Table 1-3: Difference in satisfaction levels betwee/ners and renters (cooperative apartments).

Satisfaction with Satisfaction with room | Satisfaction with
temperature humidity IAQ

Owners 79% 85% 73%

Renters 84% 85% 73%

It was found that the perception of better IEQ \Wwagher with higher humidity, despite the fact that
measurements recorded higher Gf@ncentrations with higher humidity levels. Thasditisfaction
with occupants’ own measurement devices was neateg in Salzburg. The study by Ref. [20] found
that overall satisfaction was very high for temperas from both owners and renters.

Government I nterventions:

17



Ref. [30] looks at heat demand and heat supply ftloenyear 2000 to 2050 in Austria. Based on
simulations, the report indicates that widespreaplémentation of thermal renovations and new build
to the low energy and passive standards will hasigmificant impact on the energy consumption for
heating, and that the heat demand for space andvaier heating has already peaked in the last
decade. The study concludes that government intgoreis an influential factor for maintaining the
trend of thermally renovating residences, espscitdl buildings built between 1945 and 2000.
Encouraging further innovation in heating techn@egespecially those that use renewable sources,
and thermally activated building systems are furiheentives that may be implemented. Suggested
forms of regulatory interventions include taxes @D, emissions, financial incentives for installing
renewable-based heating systems, and updatingirmyitdgulations to improve use of renewable and
low energy systems. Thermal renovations are se®edcome increasingly important for the Austrian
building stock in the upcoming decades, see Réf]. [overnment regulations also play a part in
reducing building energy use in the Netherlandsyewer, the strived for innovations were not
reached [31]. Refs. [27, 30, and 31] are withinEueopean framework of the Energy Performance of
Buildings Directive (EPBD), Ref. [32]. Regulatiofts calculating and displaying building energy use
are also in countries such as Brazil (RTQ-R, R&3)])| the USA (Energy Star), Canada (EnerGuide),
and Japan (CASBEE).

The estimated increasing number of thermal renomatdf existing buildings will most likely lower
the impact of external environmental factors asidg forces, and increase the importance of interna
driving forces in the future. Ref. [2] also recazgs the correlation between the greater impact of
occupant behavior, with stricter building regulasofor energy use, tighter buildings, and higher
insulation levels.

3.1.4 Time

Time of day:

Time of day is related to both clothing and outdoanditions. Clothing decisions have been shown to
be made upon waking for the day, Ref. [18]. Thidinectly influences the selected residential set-
point temperature as higher clothing values areggly correlated with lower set-point temperatures
On heating systems without thermostatic controis, also possible for occupants to either activage
heating system or increase heating in the evenimgs the outdoor temperature is cooler.

3.1.5 Physical environment

As stated in Ref. [2], the physical aspects oflihidding play a greater role than occupant behaivior
an approximate ratio of ten to one. In lowest epdrgildings, where all building systems have been
maximized for energy efficiency, the role of thewpant plays a larger role in determining whether o
not the lowest energy targets are achieved. Thepaoative energy behavior variance can be up to a
factor of three, see Ref. [2].

M eteorological conditions:

The most influential factors for conventional resital buildings were found to be outdoor
temperature, outdoor air humidity, and wind spesek Ref. [3]. Climate was also stated as an
influential factor on indoor set-point temperatirdref. [11].

18



3.1.6  Building/equipment properties

Heating System Type:

Reilly and Shankle (1988) as cited in Ref. [29}estdbat it is common for a combination of heating

systems to be used in buildings, and that theee large variety of types used in different ways by
homeowners. Ref. [29], which examines heating systgpes in German homes, finds a positive
correlation between education and gas heating. Meryelecisions related to socioeconomic factors
are secondary to location (urban/rural, East/Westnany) with preference for solid fuels in rural

areas, thermal quality of the building envelope] atorage space for solid fuels. The relationships
between choice of heating to household income amtber of persons in the household are shown in
Figure 1-5. Building quality, heating system tymmnd climate together can influence set-point
temperature and thermal comfort perception by ocaotgp[11].

Effect of household income Effect of household size
@
O R W
2 06 P 2 06 {u__
. P e E _-'___—i-___
=] P - _'_ﬂ.,_,—'—"'_ T o i
_E -__'___'_,.,_,—'-"' -E: .,_________ Ty
-':Ell __.-___—-___

E 0.4 - b"_"::.:'_‘ E 0.4 A _.____.___:'-—-_:___:
o e e R e I
ro --.__‘_‘_1_-. — . E == e ———
= Riiiane - F7Y |
= 0.2 £ 02
o ¥
8 ]
E ]
S &

0 a0 100 1 2 3 4 ]

Househald income (thsd. Euros) Mumber household member
[+ East O —— West O | < East O —— West O |
-« ~ East: (a5 —— West: Gas - =~ Egst Gas —— West Gas

Figure 1-5: Probability of heating type use in floemer East Germany and West Germany. Ref. [29].

Level of contral:

Studies by Refs [34] , [35], [36] and [37] cited Ref. [2] have shown that taking control out of the
hands of the inhabitant leads to dissatisfactiothn wie indoor environment, and it can be concluded
that control of one’s own indoor environment isywenportant.

In Ref. [2], window opening and heating behaviothivi Danish residences is studied. Among the
main findings, it was found that there was greatavece in the individual behavior patterns, and tha
the difference in behavior can affect overall egergnsumption by up to a factor of three, see Réf.

3.2 Summary

In summary the previously identified driving fordes energy-related behavior with respect to heatin
are grouped and listed in Table 1-4.
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Table 1-4: Driving forces for energy-related belmvivith respect to space heating. For the
explanation of the colors used we refer to the helgenderneath, the symbols used in the legend

are explained in .
biological | psychological social time

physical building/equipment
environment roperties

Temperature | Gender Expectations Ownership Time
Set Point [2] [20] (owning/coop/renting) | of
[20] day
[2]
Clothing Outdoor air| Ventilation type [20]
[2,20] humidity [2]

Window
opening [2]
Heating Clothing Understanding | Ownership
Duration [2,20] how  controls| (owning/coop/renting)
function [2,] [2]
20,26]
Window Wind speed
opening [2] [2]
# of Rooms
Heated
Which Gender
Rooms are | [2]
Heated
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4, Cooling

Depending on the type of system, occupant behdndsra significant influence on the use of cooling.
From the general to the detailed, this starts imes@ases with the choice of cooling system, the
duration and frequency of usage, the choice ofpeett temperatures, and the frequency of
maintenance.

4.1 I dentification of driving forces

Research on the air conditioning unit (AC-unit)gesavas first conducted in the frame of studies abou
the use of electricity in residential buildingsli§man et al. stated in 1977 that personal condod
health concerns were the best predictors of etitgtilemand, Ref. [38]. Up to now, especially ie th
Japanese research environment, the research omih@sage is set in relation to general behavior
patterns, Ref. [39], and the lifestyle of the ocmip Ref. [40]. An exception is the article by Réfl],
which analyzed the AC-unit usage and window-opettirgavior of eight dwellings for three days
each in Japan and found large difference in the &imd usage pattern between the dwellings.

A questionnaire survey with 554 responses on AG-wsage during the sleeping hours in Hong Kong
revealed that 83% of the occupants use their ACHonimore than five hours during the sleeping
period [42], but did not state any driving forcBef. [43] used the 2001 RECS data set to analyze th
factors affecting cooling energy and found thatcupant behavior is the most significant issue
related to choices about how often and where aidétioning is useY which is followed by physical
parameters such as the climate and the AC-unitagp&ell as socioeconomic aspects, such as income,
household size and age of the occupant.

Ref. [8] observed the AC-usage and window openiefgabior of 39 student rooms in a Japanese
dormitory through a continuous six week measurerfandne summer. They found varies individual
and building related driving forces for the usad¢he AC-unit for cooling as included in Table 1-5
and the following sub-sections. Based on the saaie fiom the dormitory building in Tokyo, Japan,
Ref. [44], analyzed driving factors for the choafeset-point temperature.

Although cooling energy demand and overheating Iprob are related to the operation of shading
devices during summer, reviewing the literaturetiom use of sun shading devices in a residential
environment did not reveal a substantial amounpulblications regarding the topic of occupant
behavior

Ref. [45] conducted a worldwide survey with 435tggpants of which one third was Japanese, one
third German and the other third distributed to enitian 40 countries in the summer version.

The 106 participants possessing a cooling devices vasked about their reason for the last and
hypothetical next start or stop of their coolingide.

There was no literature found related to the fregyeof maintenance, assuming it to be another facto
influencing the energy demand once the device ibed on.
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4.1.1 Biological

Duration and frequency of usage (mainly per centage of usage)

Seligman et al. stated in 1977 that personal canafiod health concerns were the best predictors of
electricity demand [46]. Health reasons for nohgsan AC-unit during the night were stated by 50%
of the respondents in Ref. [41]. Ref. [47] obsert&dAC-units in eight apartments of a multi-family
building in New Jersey, USA from June through Seyiiter 1986. They also found that health reasons
were claimed for reducing the frequency of usagettoer with safety reasons (due to a hot extension
cord) and a general fear of electrical appliandé® latter two will not be dealt with here in détai
believing that they depend on the period of thevesprand the then probably not fully developed
technology of residential cooling devices.

Ref. [8] observed the duration and frequency AGgesfor cooling, and found that the way the AC
unit was used at home during childhood, gender, cingatic origin have significant influences on
AC-usage. Ref. [43] found that the age of occuparilsences their usage patterns.

Choice of set-point temperature
Ref. [44] analyzed driving factors for the choideset-point temperature: the origin from a moderate
climate together with the running mean of the oatdemperature increased the set-point temperature.

4.1.2 Psychological

Duration and frequency of usage (mainly per centage of usage)
Ref. [8] observed a significant influence of thergeived effectiveness of AC and the cultural
background on the duration and frequency of theua&ge for cooling.

Choice of set-point temperature
Preference for air-conditioned rooms was amongnhe factors to lower the set-point temperature
according to Ref. [48]. Origin from an East-Asianuntry increased the set-point temperature.

4.1.3 Social

Duration and frequency of usage (mainly per centage of usage)
Ref. [43] found that household income has no sicguift influence on the frequency of AC-unit usage.

Switching on and off the cooling device
Ref. [40] concludes that switching off the coolidgvice depends more on the schedule, i.e. when
leaving a room or going to bed, than the thermairenment.

Number of rooms equipped with a cooling system

Ref. [43] found that socioeconomic factors are ifiggnt driving forces related to the number of air
conditioned rooms accounting together with climaind physical factors for 48% of the variation in
this parameter.

41.4 Time

Duration and frequency of usage (mainly percentage of usage)
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Ref. [40] observed the control behavior of air dtinders in living rooms in 79 residential housas i
the Osaka region of Japan. They found that usagesvaccording to the period of the day — the
percentage of AC-units being switched on is lowanirdy midday and evening compared to nighttime
and morning. Whether this is related to variatiom®ccupancy levels was not reported. Ref. [49]
analyzed the AC-unit usage and window-opening bieh@f 8 dwellings for three days each in Japan
and found large difference in the time and usadepes between the dwellings. Based on data from
four dwellings situated in the Kawasaki area inalapnd a measurement period of four months from
June to October, Ref. [39] found that the air ctading use is mainly influenced by the time of day
Ref. [8] also observed differences in AC-usagecimoling between morning, daytime, evening, and
night times.

4.1.5 Physical environment

Duration and frequency of usage (mainly per centage of usage)

Ref. [43] found that the climatic conditions (repeated by the cooling degree days (CDD)) and the
number of rooms equipped with an AC-unit were treshinfluential factors. However, only 26% of
the variation in usage frequency could be explalmethese factors.

Ref. [39] found that air conditioning use is infheed by season and outdoor air temperature. R#f. [4
also recognized outdoor temperature as the maitorfadsage increases with higher outdoor air
temperatures. Ref. [50], observing 17 residentrad #ght-commercial AC-systems, found a 6%
increase of operation time for every 1°C rise idoor-outdoor temperature difference. Ref. [8]
observed a significant influence of outdoor tempegeand humidity on the duration and frequency of
AC-usage for cooling.

A one year study observing 8 single-family resig=nm Austin, USA (Ref. [51]) showed that there
was a 6% increase in the hourly fractional openatime for every degree increase in the difference
between the indoor and outdoor temperature, andldkager set-point temperatures were related to
longer usage periods.

Switching on and of the cooling device

Ref. [52] monitored 24 Korean dwellings (six dwegjs for nearly two months and 18 for one week).
According to their results, the indoor thermal @omiment was above the comfort zone according to
ASHRAE Standard 55/2010, most of the time the A@-was switched on. However, no percentage
or further analysis is stated regarding this statgm

With respect to starting the device, 65% statedptature as the reason, followed by around 15%
stating humid conditions according to Ref. [45].aRens to stop the device were habit (25%),
temperature (22%), and leaving the room (15%).

Ref. [40] concludes that switching off the coolidgvice depends more on the schedule, i.e. when
leaving a room, or going to bed, than the thermalrenment.

Choice of set-point temperature

Ref. [40] observed variations in the set-point teragure between 24°C and 29°C, but did not state an
explanation. However, they found a positive relagitip between the set-point temperature and the
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temperature at which the AC-unit was switched an,when the set-point temperature was 1°C higher,
the indoor temperature at the time of switchinglos AC-unit was observed to be 1-2°C higher. Ref.
[48] analyzed driving factors for the choice of-peint temperature: the running mean of the outdoor
temperature increased the set-point temperature.

Existence/Choice of cooling system
Ref. [43] states that there is a close relationblegveen the ownership of an AC-unit and the clamat
in which the building is situated.

Number of rooms equipped with a cooling system

Ref. [43] found that climatic factors have a sigrdht influence on the number of air conditioned
rooms accounting together with physical and socimemic factors for 48% of the variation in this
parameter.

4.1.6  Building/equipment properties

Duration and frequency of usage (mainly per centage of usage)

Ref. [43] found that the AC-unit type affects theoting energy. Ref. [8] observed a higher use
frequency of the AC-unit for cooling for top flooooms and rooms having a south-oriented window
compared to an east or west facing one. Ref. [d3hd that the number of rooms equipped with an
AC-unit was the most influential factor togetheittwclimatic conditions (represented by the CDD).
However, only 26% of the variation of the usagejftency could be explained by these factors.

Choice of set-point temperature
Ref. [48], analyzed driving factors for the choimleset-point temperature; a south-oriented window
was among the main factors to lower the set-pemiperature.

4.2 Summary

In summary, the previously identified driving foscéor energy-related behavior with respect to
cooling are grouped and listed in Table 1-5.

Table 1-5: Driving forces for energy-related bel@with respect to cooling. For the explanation
of the colors used we refer to the legend undemehe symbols used in the legend are explained
in.

biological psychological social time physical Building /
environment equipment
properties

Percentage of | Health[41], [47] Seasorj39]
usage

Time of day|] Outdoor

[39], [51], | humidity [39],
8] 8]

Origin from Wind speed

Middle Eastern [39]
country [8

Wind direction| Set point
[39] temperature of]
systenj51]
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temp.
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No. of rooms
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temperature
difference
[51,51]
Switching on Comfort range Guests coming Temperature
[52] [45] [45]
Switching off Leaving rooni45]
Set point | Male[44]

Importance - o
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5. Ventilation and window operation

Investigations on window opening behavior and radtuentilation have mainly been carried out with
two aims: to find whether or not occupants are ed with adequate fresh air and to find the
influence on energy consumption. The former categirstudies has usually been carried out in
dwellings and has a health or a comfort perspectiddle the latter category has mostly been studied
in offices with a comfort and energy performancespective. So far, there are only a few
investigations regarding residential buildings #mel studies that are aiming at implementing raalist
behavior patterns in simulation programs have txe®d on occupant behavior in offices. Moreover,
no investigations regarding the mechanical ventifatiriving forces in residential buildings haveshe
found in the literature so far. For this reasorly dhe topic of natural ventilation and window ojremn
behavior in particular, has been dealt with in g@stion.

51 I dentification of driving forces

The use of windows affects ventilation rates in iwgs and consequently influences the amount of
energy required in buildings and the indoor clim&ece the air change rate has a big impact on
energy consumption, it is evident that differenhdaor patterns will result in different energy
consumptions.

Ref. [53] conducted 358 air change rate measuremniergix properties in London using the decay of
coal-gas (containing about 50% of hydrogen) libeatahto the air. This reference discussed the &ffec
of flues, air gratings, cracks, and leakages onathehange rate in the houses and finally noted th
any reasonable amount of ventilation could be akthiif liberal window openings were provided.
They obtained as many as 30 air changes per houndans of cross-ventilation in experimental
rooms. Since then, houses have been tightenedeabelds increasing the relative effect of window
opening on the air change rate. In fact, when f8d]. measured air change rates in a house in Magin
over a year, they found that the window openingalv@r had the largest effect on air change rates,
causing increases ranging from a few tenths of iarcteange per hour to approximately two air
changes per hour. Another paper describing the sagasurements, Ref. [48], stated that opening a
single window increased the air change rate byraauat roughly proportional to the width of the
opening, reaching increments as high as I*3Nultiple window openings increased the air change
rate by amounts ranging from 0.10 to 2.8 h

While Ref. [53] found an average air change rat@.8fli* and with only 11% of the measurements
under 0.4 K in London, Ref. [55] found that 75% of dwelling#thout mechanical ventilation had air
change rates lower than 0.3%, lsuggesting that these dwellings had been tigltém such an extent
that occupants needed to actively adjust buildimgtrols to obtain adequate supply of fresh air.. Ref
[56] also found that, depending on the season, detvb0% and 90% of the Californian dwellings in
the study had air change rates lower than 035 h

According to Keiding et al., Ref. [57], who condedta questionnaire survey in Danish dwellings,
53.1% of the occupants slept with an open windownduautumn while 25.2% had a window open
during the night in winter, which in most situatsoshould ensure an air change rate of more than
0.35 ht. They found that 91.5% of the respondents vehyedpening one or more windows each day
throughout the year. The results showed that alprgportion of Danish occupants use windows to
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adjust the supply of fresh air to the dwelling. Téféects of this behavior on the energy consumption
might be substantial. Ref. [58] measured the a@inge rate and temperature in 16 Danish dwellings
and found an average air change rate of 0568 h

In a study, Ref. [59], it was noted that there wwasonsiderable difference in the total air change
between the individual dwellings. As the basicaiange was fairly similar in the dwellings, it was
concluded that the user influenced air change tfie.behavior of the occupants) caused these large
differences. This conclusion was confirmed by R&0], who concluded that a substantial variation in
ventilation behavior found among seven househotdfgected different occupant functions and
management strategies.

The authors of Ref. [41] were able to quantify éfffect of occupant behavior on air change rateyThe
investigated the relationship between occupant \iehand the energy consumption used for air
conditioning, by means of tracer gas measurememntsjaestionnaire surveys in Japan, and concluded
that 87% of the total air change rate was causdtidopehavior of the occupants.

One aspect that affects the air change rate isditem and for how long the windows are opened but
also the degree of opening will have an impact.

Window opening and closing

The window opening and closing behavior in dwekling strictly connected to the building
characteristics since the effectiveness of nautgatilation is strongly dependent on the charasties

of ventilation openings and their controllabiligspects which are closely related to the type @& s
of the windows and its placement within the facadék type of dwelling (single house or apartment),
orientation, and type of the room (bedroom, liviegm or kitchen) are the main parameters found to
have an influence on occupant behavior relatedindew opening and closing.

5.1.1 Biological
The interaction between the occupant’'s gender @ncepved illumination had a statistical impact on

the window opening behavior, Ref. [64].

The investigation in Ref. [14] on households in thetherlands that took place in autumn 2008
showed that the behavior of elderly people sigaifity differed from that of younger people, and the
results fit with the Annex 8 results, Ref. [66].chAi-squared test showed that presence was assbciate
with fewer hours per day of open windows in livingpms and bedrooms, while the presence of
children at home was associated with keeping wirdddased in the living room.

5.1.2  Psychological

Ref. [66] highlighted that indoor climate prefereadn terms of temperature are one key driver ef th
behavior of the occupants, but this driver is gjiprtonnected to the occupant’s perception of ceinfo

5.1.3 Social

The Annex 8 project, Ref. [66], highlighted a clearrelation between smoking behavior and the
airing and ventilation of living rooms: in smokitngpuseholds, the living room is ventilated twice as
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long on average than non-smoking households. Meredie longer the dwelling is occupied the
longer the windows were kept open, especially tha@rdiom windows, and in this way the Annex 8
project concluded that the presence of occupardagdinelling and the use of windows were related.

514 Time

Investigations have shown different daily pattefmisthe different types of rooms, see Figure 1-6.
Typically, the maximum number of open windows osculuring the morning, but during early
afternoon (when cooking) the number of open wind@sill relatively high but gradually decreases
during the afternoon until the return of workindp@bitants to the home (at about 5 p.m.). The tifne o
day was found to determine window transition prolttéds (closed to open and open to closed) in the
aforementioned study in Ref. [67].

Return home
Cooking (g p.m.)

NUMBER OF OPEN WINDOWS ([Ngy)

§ Fab 5 Fab

Figure 1-6: Daily profile of window opening, Reéd].

Season has been found to be correlated with wingfmeming behavior in Ref. [68], i.e. windows are
open longest in summer and shortest in winter. g/l August the overall opening period for all
windows amounts to about 25% on average, it deese&s about 5% in winter. This finding is

supported by a successive study conducted in offickdings in 2008, Ref. [61], where the

percentages of open windows are highest in sunipwest in winter, and intermediate in autumn and
spring.

5.1.5 Physical environment

Window opening behavior is strongly related to gexception of comfort and the microclimate in
dwellings. Due to this correlation, the most impott environmental parameters have been
investigated in many studies.

Not surprisingly, the outdoor temperature had ssmerable impact on window opening behavior. An

earlier study, Ref. [62], found that the outdoanperature was the single most important explanatory
variable when investigating the number of open wimsl in 15 dwellings. The investigation in the
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Annex 8 project, Ref. [66], has shown that in teeperature range between -10°C to 25°C, a direct
linear correlation exists between window use and@wr temperature, see Figure 1-7.
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Figure 1-7: Relationship between the average useitndows and doors and the average outdoor
temperature, Ref. [66].

Ref. [63] found that temperature (mean monthly terapure and average temperature swing) is an
important explanatory factor for window opening.fR€&8] found a change in ventilation behavior
around 12°C: generally, below 12°C, daytime vetitilaincreases by approximately 75% per degree
temperature difference, above 12°C, ventilatiorréases by about 1.1% per degree. In terms of
ventilating frequency, this represents an incredssbout 50%. The results of Ref. [64] are consiste
with the findings in Ref. [68]. The statistical &m®is related to the questionnaire survey carriedimo
2006 and 2007 in Danish dwellings has shown thadwaiv opening behavior is strongly linked to
outdoor temperature. Recently, the results of igistic regression model based on long-term
monitoring of behavior and environmental variahie45 dwellings confirm that outdoor temperature,
indoor temperature, solar radiation, and indoor, €@hcentration were the most influential variables
to determining window opening/closing probability.

The Annex 8 project, Ref. [66], showed that windoave open more often and for longer periods
during sunny weather, the findings of Ref. [65]Jiiith these earlier studies. In Ref. [68], a distin
dependence on solar radiation could not be conflirras the influences of outdoor air temperature and
global irradiance are superimposed.

The influence of wind speed was investigated inttedl aforementioned studies, and the results are

coherent in finding a significant decrease in thevplence of open windows at high wind speeds:
above a wind speed of about 8 m/s, nearly all wivslavere closed.
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Figure 1-8: Percentage of open windows as a funatibwind speed, Ref. [66].

Based on an average wind velocity of 3 m/s, ReJ] fFoposed to introduce the wind influence as a
correction term for temperature-related window itatibn periods with the following equation:

10—wW

topen (w) = 7 X topen (3mm (%)

&

5.1.6  Building/equipment properties

As early as 1988, the study of Annex 8 on occupatiavior with respect to Ref. [66] focused on a
combination of questionnaires and observationseterchine which action is taken by occupants to
ventilate their homes and to evaluate the reasmmhéir actions. The study has shown that the tfpe
dwelling (house or apartment) influences the lergjttime windows are open and also has an effect
on the degree of window opening. In the same imya&isbn, it appeared that windows in living rooms
and kitchens were open on average for shorter geriwhereas windows in bedrooms were open for
longer periods in houses compared to apartments. t¥ype of the dwelling (detached one-story
residence) was found to affect the degree of windipening in residences in the pilot study
conducted by the authors of Ref. [67] in North Qambetween October 2001 and March 2003.
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shows the room type ranked according to windowfaseach of the investigated dwellings. These
results could be summarized as follows: accordmghte study of Annex 8, Ref. [66], the main
ventilation zones are bedrooms, while the greatestentages of windows which are never opened are
in living rooms, kitchens, and bathrooms.

This finding is consistent with a study for 24 iteal flats in Germany, Ref. [68]. Even in the extre
winter weather, bedrooms are ventilated more fratipehan all rooms on average: during the entire
measuring period the window opening time in bedrea@m®ceeded the average for all rooms by
approximately 50%. The room orientation is alsoom@nt. The Annex 8 project, Ref. [66], found that
when the sun was shining, south facing living ro@nd bedrooms were more likely to be ventilated
for longer periods than similar rooms orientatedtimer directions.

Table 1-6: Rank order of window use per type ofmpRef. [66].
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The investigations have shown different daily pattefor different room types. Typically, the

maximum number of open windows takes place dutiegniorning, but during early afternoon (when
cooking) the number of open windows is still rataty high but gradually decreases during the
afternoon until the working inhabitants return hoateabout 5 p.m. The time of the day is found to
determine the window transition probabilities (€dsto open and open to closed) in the
aforementioned study in Ref. [67].

Degree of opening

In the various projects conducted for the Annex@eqzt, Ref. [66], three levels of window opening
were examined (closed, slightly open, and wide hpesrge variations among the degree of window
opening were found. The Dutch research findingsveltoa tendency towards a larger percentage of
wide open windows, while the Belgian research figdi based on interviews with the occupants in
2400 social houses, showed a trend towards sligipéy windows.
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Weather also influences the degree of window operiihe studies conducted for the Annex 8 project
showed that when the outside temperature was 534G &, fanlights were left open for more than
eight hours in 17% and 8% of living rooms respesiiv Moreover, an outside temperature change
from 15°C to -5°C produced changes in the percentdgpen or slightly open windows from 41% to
34% in the mornings and from 32% to 24% in therafiens. For the main bedrooms, these figures
are 70% to 64% and 55% to 44% respectively.

Ventilation type

The study in Ref. [68], compared the duration ofiddw ventilation with naturally ventilated flats.
Ref. [63] concluded that windows in flats withouechanical ventilation systems are open about four
times longer than in flats with mechanical venilat Actually, this result is inconsistent with the
Annex 8 project, Ref. [66], where only small difeces are found between dwellings without
mechanical ventilation and dwellings with variougds of ventilation systems. However, the
interviews showed that the occupants had no uratetstg of how to use their mechanical ventilation
systems.

The IEA Contributed Report 08, Ref. [69], examiried influence of specific ventilation systems on
the active ventilation behavior. From the reporisitconcluded that ventilation by behavior is only
partly related to the type of ventilation devicatalled in the dwellings; the mechanical ventilatio
system in living rooms tends to influence the Matiobn by behavior; in bedrooms, behavior tends to
be independent of the installed system.

Moreover, the Annex 8 project, Ref. [66], foundttinandows in centrally heated dwellings were less
likely to be opened for long periods than thos@am-centrally heated dwellings, and that dwellings
with warm-air central heating were ventilated lésm dwellings with radiator systems.

Clothing

Ref. [70] carried out a field study in a 17 stof§ice building. The author found that the anticiggt
outdoor environmental conditions influenced theicd®f clothing worn on a specific day more than
the anticipated indoor office temperature. These $tudies suggest that the outdoor temperatura has
very high impact on the choice of clothing. Thisswarther investigated by the authors of Ref. [71]
who analyzed the relationship between clothing bemaand the indoor and outdoor temperatures
based on field investigations in 28 cities all otrex world. They found that the outdoor temperagire

6 o'clock in the morning influenced the clothingsihation the most. The influence of outdoor
temperature was larger in naturally ventilateddings than in mechanically ventilated buildings.

Since thermal comfort is thought to be one of tlamueterminants of temperature set-point and may
have a significant impact on window opening behgwvetothing behavior will also influence these
parameters. Consequently, the occupants’ clothimgjce will affect the energy performance of a
building. However, clothing behavior is an occupamtdaptation means to the indoor environment
and as such does not affect energy consumptioatlyire

5.2 Summary

In summary, the previously identified driving foscéor energy-related behavior with respect to
ventilation/window operation are grouped and listedlable 1-7. Unfortunately, studies regarding
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driving forces related to mechanical ventilatiormges in residential buildings were not found in the
literature. For this reason, only window openindhdgor has been dealt with in this section on
ventilation.

Table 1-7: Driving forces for energy-related behawivith respect to ventilation/window operation.
For the explanation of the colors used we refethi® legend underneath, the symbols used in the
legend are explained in .

biological | psychological social time physical environment building/equipment
properties
Windows Age Perceived Smoking Season [68] | Outdoor temperature [62 Dwelling type
opening [14,66] illumination [64] behavior [66] 63, 64, 66, 68] [66,67]
and
closing
Gender Preference in| Presence al Time of day| Indoor temperature [62] Room type [66,68]
[64] terms of | home [66] [66,67]
temperature [66]
Solar radiation [65,66] Room orientation
[66]
Wind speed [66,68] Ventilation type [63,
66, 68, 69]
CO, concentrations [64] Heating system [66]
Degree of Outdoor temperature [66]
opening

Importance ! o

an N
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6. Domestic hot water

Occupant behavior can significantly influence tise of hot water in residential buildings. Showering
frequency, duration and intensity of showering,hbaj frequency, sink use frequency, washing
machine and dishwasher use frequency and runningetatures, and appliances’ water use efficiency
are examples of domestic hot water energy-relatedmant behavior. Domestic hot water use patterns
vary on different time scales: time of day, timetlud week, month, and year. In the literature, sdve
detailed modeling approaches for domestic hot wadercan be found, see e.g. Refs. [72], [73], [74],
and [75]. Domestic hot water modeling approachdt b discussed in more detail in the second
chapter on modeling.

A typical example of the (measured and modelediptian of domestic water use during the time of
day is displayed in Figure 1-9.
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Figure 1-9: Residential water flow rate during tbeurse of a day showing modeled and measured
values based on 43 dwellings, Ref. [74].

6.1 I dentification of driving forces

A study of domestic hot water use has been repamt&ef. [76] based on data from seven dwellings
in the United States. The findings of this studpwlihat bathing accounts for the largest use, while
the kitchen accounts for the second largest use.VHniation in energy use per person is primarily
attributed to behavioral differences among the paats. In this study, the variation in individual
water use behavior is greater than the variatidhertotal domestic hot water use in all houses.

The authors of Ref. [77] reported the largest dady water use was for bathing and showering (43%)
and the second largest use was by washing mac{80&s). This study is based on American data.
Various household characteristics have been ardlyzthis study, such asye education number of
children, satisfaction with hot water temperaturand hot water conservation indexn this study,
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educationwas found to be the only significant variable expihg hot water use. The higher the
education level, the more hot water was used. Sddoeation is usually correlated witicome it is
likely that these households owned more water-usipgliances. A positive correlation between
incomeand domestic hot water use was also found in [A8jvever, in Ref. [79] it was found that
people having a higher education, higher incomd, aigher status job were more likely to apply
water saving strategies.

The model in Ref. [78] suggests that renter-ocalipi&ellings consume less domestic hot water than
owner-occupied dwellings. However, research in [Rf] suggests that homeowners are more likely
to save energy than renters.

Residential water use monitoring by water compaaften provides interesting statistics of water use
behavior. For example, research by the Dutch aationi of drinking water companies, Ref. [81],
showed that showering accounts for the greatestrvwesie. The increase in water use observed in the
last few years in the Netherlands is primarily doechanging showering habits: shovekrrration is
increasing and the showers with higher watgensities are increasingly used. Water use for
showering depends on the occupagender shower frequency and duration are higher for wome
than for men. The lower the occupangducation levelndjob status,the more water is used for
showering.

Average per-capita domestic hot water use may he diiferent for different countries, Ref. [82].
Important aspects of energy-related behavior fonektic hot water use are tharation andintensity
(water flow rate) of a shower and tfrequenciesof showering and bathing. These will be discussed
below.

6.1.1 Biological

A Dutch study, Ref. [83], showed that shower durais strongly related tage see Figure 1-10. The
shower duration is relatively long for people ard@® years old and for people older than 65 years.
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Figure 1-10: Shower duration in minutes as a fumttdf the age of occupants in years in the
Netherlands. See Ref. [83].
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Shower frequency is also strongly relatedagge as can be found in the report of a Dutch study,
Ref. [83]. The reported shower frequencies are shiowigure 1-11. The shower frequency is highest
for ages between 20 and 45 years; the correspordi@gage shower frequency is six to seven times
per week. Lower frequencies are found for younger @der people.

Shower frequency (# per week)
O = N W L v Oy N 0
!

0 10 20 30 a0 50 60 70 80 90
Age (years)
Figure 1-11: Shower frequency per week as a funaticthe age of occupants in years in the
Netherlands. See Ref. [83].
6.1.2  Psychological

A negative correlation was found between showeatitum andincomein the study of Ref. [83]. A
possible explanation is that people with a higloine may have less time for taking a shower.

People with a higher education, higher income,ahdjher status job are more likely to engage in
water conservation practices according to Ref..[79]

The lower theeducation levehndjob statusthe more water is used for showering accordingeb
[81].

Contrary to the previous paragraph, Ref. [78], dinal positive correlation betwedéncome and
domestic hot water use. According to Ref. [83], fteguency of using a bath depends upwmome
Households that frequently use their bath are mdiaiilies with children and a relatively high
income.

6.1.3  Social

The frequency of using the bath also dependsousehold compositicaindhousehold sizeRef. [83].
Households that frequently use their bath are mdarhilies with children.
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6.1.4 Time

Shower duration is different for weekdays and weedkgays, Ref. [82].

6.1.5 Physical environment

The authors of Ref. [84] found seasonal differerinelsot water consumption up to a factor of three
based on data from 10 families in Japan, which ccdaé related to changes in outdoor weather
conditions. In winter, daily consumption was arouB@ MJ/day, while in summer hot water
consumption was below 10 MJ/day.

6.1.6  Building/equipment properties

Intensity of water use events can be influencedpgmcific properties of the applied equipment (water
saving devices). For example, the usdosi-flow showerheadsan reduce energy use for domestic
hot water. However, off-setting behavior such asnanease in shower length after installing a low-
flow showerhead may undo the positive effects diewaaving technologies, Ref. [85].

6.2 Summary
In summary, the driving forces for energy-relatethdvior with respect to domestic hot water use are

categorized according to Figure 1-4 and listed in .

Table 1-8: Driving forces for energy-related bet@awvith respect to domestic hot water use. For
the explanation of the colors used we refer to ldgend underneath, the symbols used in the
legend are explained in .

biological psychological social time physical building/equipment
environment properties
Shower duration Age[83] Income[83] household sizd Weekday orf Outdoor low-flow  showerhead
[83] weekend82] | conditions B4 [85], [83]
GendeP Origin Turkey, time of day Boiler [83]
[81] Morocco,
Surinamg81]
healtrt comfort
Frequency Age|[83] comfort household ease of operatidn
bath/shower composition:
[83]
Gendeb Origin  Turkey,
[81] Morocco,
Surinamg81]
hygiené
I ntensity shower low-flow  showerhead
[85]
Other appliances Education[77] Household sizs
[86]

1) Duration and frequency is higher for women tf@men.

imporance I # | + [

*

! Not based on references, yet.

37



7. Electric appliances/ lighting

The use of electric appliances and lighting indesces is strongly influenced by occupant behavior.
In the literature, investigations of energy-relateehavior and its driving forces are very rarely

separated between appliances and lighting, butrivdtion from studies in office buildings can be

used to some extent.

7.1 I dentification of driving forces

When the energy consumptions for appliances anditig are considered, large variations are found,
partially relating to socioeconomic parameters sashincome, persons per household, age, and
education, etc. 30-40% of the variation in elediricconsumption can be explained by these
parameters, see Ref. [87]. Research to find ottersvio describe the occupant behavior related to
energy consumption is ongoing, although a final pedect model is way ahead of us at the moment.
Another suggestion for understanding occupants sdineen social sciences, where the practices of
the occupants are used as indicators for theirggneonsumption. This model is suggested by
Ref. [88]. It is based on practice theory where tbetines, ways of thinking and acting of the
occupants form the basis for different energy esldiehaviors varying from high energy consumption
families to low energy consumption families whoeefively implement energy conserving strategies.
In Ref. [89], it is concluded that routines areluehced by norms and ethics learned in childhood,
conscious reasoning about economic or ecologigaas, design of new technologies, and changes in
social relations. Figure 1-12 shows the electriaig in 1068 residences in a suburb of Copenhagen.
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Figure 1-12: Electricity use per year per persortlie household (grey); electricity use per year per
household (black), Ref [4].

Figure 1-12 illustrates both the large variatiorelectricity use between households of equal sird,

that electricity use per person decreases as holdssize increases as not all electricity use in a
household is dependent on household size.

38



In the following tables the households are dividtetd three different categories — low use, average
use, and high use households — to find explanafienthe differences in electricity use. Generally,
energy efficiency of appliances and lighting (Taldl® and Table 1-10) could not explain the
differences in electricity use; however, the numdoed use of appliances could (Table 1-11 — Table 1-
14).

Table 1-9:. Relation between electricity use per daebwld and the energy efficiency of
refrigerators/freezers, Ref. [4].

Low use Average use  High use Total
No low energy 38% 26% 37% 100%
refrigerator/freezer
Low energy 26% 35% 29% 100%

refrigerator/freezer

Table 1-10: Relation between electricity use pardatold and the energy efficiency of light bulbs,
Ref. [4].

Low use Average use High use Total
o7 hi _—
ITess than 25% high efficiency 32% 35% 33% 100%
light bulbs
- 0 i 1CI i
25-50% high efficiency light 35% 28% 37% 100%
bulbs
o hi S
More than 50% high efficienc 36% 23% 21% 100%
light bulbs

Table 1-11: Relation between electricity use perudshold and the number of
refrigerators/freezers, Ref. [4].

Low use Average use  High use Total
1 Refrigerator/freezer unit 41% 31% 28% 100%
2 Refrigerator/freezer units ~ 21% 37% 42% 100%
3 Refrigerator/freezer units  17% 35% 48% 100%

Table 1-12: Relation between electricity use paudaiold and possession of a tumble dryer, Ref.
4].

Low use Average use  High use Total
Do not have tumble dryer 45% 36% 19% 100%
Have tumble dryer 16% 30% 55% 100%

Table 1-13: Relation between electricity use pardaiold and use of the tumble dryer, Ref. [4].

Use of tumble dryer Low use Average use High use Total
1 time per week 28% 33% 38% 100%
2 times per week 13% 39% 48% 100%
3 times per week 14% 28% 58% 100%
4 times per week 8% 28% 64% 100%
5 times or more per week 9% 21% 70% 100%
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Table 1-14: Relation between electricity use pardatold and number of TV/video units, Ref. [4].

Average use

1 TV/Video unit 50% 30% 20% 100%
2 TV/Video units 31% 40% 29% 100%
3 TV/Video units 22% 32% 46% 100%
4 TV/Video units 16% 36% 48% 100%
5 or more TV/Video units 7% 13% 80% 100%

To get an idea of how electricity is used per hbo&® an analysis of end use was made in Ref. [87]
in 100 different households. The results are disguain Figure 1-13. The group for “other”
consumptions also includes electricity for cookimdpich according to Ref. [87] typically amounts to
10% of total electricity consumption.

28% M Refrigerator/freezer
[ Dishwashing

E Wash/tumble dryer
B TV+VCR+Hifi

@ Computers

[ Lighting

m Standby

4%

9%

1% g Other (incl cooking)
0 . .

0
13% 4% 6%

Figure 1-13: Distribution of household electricitpnsumption based on measurements in 100
dwellings, Ref. [87].

Different electrical appliances uses have differemitines and driving forces. Lighting practices
(number and type of lamps and operation) are slyonfuenced by cultural norms of comfort and
interior decoration style, see Ref. [90], and ddabits from childhood seem to influence electricise
routines, see Ref. [89]. Interviews in Ref. [89pwaked that occupants reflected much more about
lighting energy use than on all other aspects @ftatity consumption, which was not very ratioaal

it typically accounted for less than 15% of totédaotricity use. The use of electric lighting in the
domestic sector also depends on the level of naigtd coming in from outdoors coupled with the
activity of the household residenfBhe number of people who are at home and awakévéact
occupancy) is the other key factor for domestihtiigg use.

Energy use for clothes washing is not questionedl faw consider the environmental cost, see

Ref. [89]. However, tumble dryer use differs grgdtbm family to family ranging from non-use to
constant use for every wash load, as illustratefhinie 1-12 and Table 1-13.
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Routines and energy use for cooking including the af freezers and microwaves differs greatly from
household to household, as does the use of infamatnd communication technologies (ICT)
(computers, television, hi-fi, etc.). Investigatoimave shown that up to 90% of electricity usel@®F

is used in standby mode and only a minor perceritaderived from actual use , see Ref. [91].

7.1.1 Biological

A Danish investigation of 100 families showed tgahder had no significantly influence on electric
energy use, Ref. [87]. However, an age influence fwand, reflecting the different stages in lifelan
consequent changes in energy use. It was shownpduagile above 60 years had relatively larger
energy use for refrigerators/freezers and for ifghtwhile energy use for ICT was at an averagellev
and the energy use for washing, dishwashing artdedadrying was considerably lower.

Small children below the age of six have slighttyér electricity use than adults, while teenagers
used 20-30% more.

7.1.2  Psychological

No documentation on the influence of these driiiarges has been found in the literature.

7.1.3  Social

In the following, some of the most important socim@omic parameters are described.

Per sons per household

One of the very important parameters influencirgdlectricity consumption is the number of persons
per household. It is found that electricity constiop increases with the number of people in the
household, which is documented by Refs. [92] aq. [8
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Figure 1-14: Electricity consumption in kWh/pergmer year as a function of the number of persons
per household in a larger area with dwellings irhis, Denmark, Ref. [92].
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As seen in Figure 1-14, there is large consumpiammation for different household sizes. Common
for the largest and smallest consumption for eawhiséhold size is a decreasing tendency with a
greater number of persons. If the electricity comgtion per person is calculated, it is decreasiit w
the number of persons per household, which istithtsd in Figure 1-15.
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Figure 1-15: Electricity consumption as a functioinpersons in the household based on Ref. [87].

The decreasing consumption per person can be arpléy the basic electricity consumption which is
common for all households despite household sizeludled is electricity use by the refrigerator,
freezer, and partly by cooking, and lighting.

Ref. [93] showed that the energy use for artifidigihting was also strongly dependent on household
size, see .

Table 1-15: Electricity consumption by lighting;raral average for different household sizes. The
data are seasonally and geographically standardifeef. [93].

Household Number of Lighting, kWh Lighting/person,
size households kwh

1 20 405 405

2 27 586 293

3 7 735 245

4 11 a4 235

=5 4 113 223

All 69 636

Income and dwelling area

The importance of income and area changes accoradiRgf. [87] whether one looks at apartments or
detached single family houses. Income has a largpact than area on energy consumption of
detached single family houses. The opposite isddion apartments, where the area has the largest
influence. The analysis is based on data from rtiae 50,000 Danish dwellings.
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Figure 1-16 and Figure 1-17 show the clear depasydbatween income and electricity consumption.
The income is in Danish Kroner (€1 is approximately DKr) and is before taxes (tax approximately

40%).
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Figure 1-16: Electricity consumption as a functiminncome for detached single-family houses,

Ref. [87].
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Figure 1-17: Analysis of electricity consumptionaaiinction of income for apartments, Ref. [87].

The same electricity consumption analysis is mada fainction of the dwelling area. The results from

this analysis are shown in Figure 1-18 and Figui®.1
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Figure 1-18: Electricity consumption as a functiginarea for single-family detached houses, Ref.
[87].
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Figure 1-19: Electricity consumption analysis akiaction of apartment area, Ref. [87].

7.1.4 Time

In office and school buildings, occupants switchaatificial lighting upon arrival and while present

a room as a function of the natuiibmination, and rarely switched off artificial lighting until
departing a room if the room was completely empée Ref [94].Figure 1-20 shows the probability of
switching on artificial lighting as a function ofork plane illuminance. Similar results have been
found by other authors, see e.g. Ref. [7].
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Figure 1-20: Measured switch-on probability funetiopon arrival in office buildings. Hunt's original
function (solid line) describes the average swiighbehavior of a group of users, see Ref. [94].

Ref. [95] obtained similar results through measwet® in five different office buildings. Figure 1-2
shows the probability of switching the lights oroaparrival in two of the offices as a function bét
prevailing task illuminance level, while Figure 2-8hows the probability of switching the lights off
as a function of the duration of absence in minuésilar results have also been found by Ref..[96]
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Figure 1-21: Probability of switching the lights ampon arrival in the office in VC and FH as a

function of the prevailing task illuminance levekf [95].
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Figure 1-22: Probability of switching the lightsf@afs a function of the duration of absence (in
minutes) from the offices in VC, FH, and HB, R@5]][

Similar results could be expected to be valid &sidences, although the relationships might besquit
different. Moreover, the number of people who arbame and awake (active occupancy) is the other
key factor for domestic lighting us€his is supported by results obtained from a ligiptdemand
survey taken in 100 UK residences, which shows tiamMighting demand during a typical weekday
changes with season, Ref. [97].
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Figure 1-23: Daily lighting profile (monthly averag, weekdays) at different times of the year
averaged over 100 homes showing demand in Junb€dagey line), September (solid grey line),
December (solid black line) and March (dashed bliaok), Ref. [97].

7.1.5 Physical Environment

In a residential study, Ref. [64], the operationlighting is found to correlate strongly with solar
radiation, perceived illumination, and outdoor temgture. The age, gender, and thermal sensation of
occupants also had an influence on the lightingpusbability in residential buildings.

No documentation has been found in the literaturghe influence of the physical environment on
other electricity uses in residences.

7.1.6  Building/equipment properties

No significant relationship has been found in thierdture on the influence of building/equipment
properties on electricity use for appliances agtiting. Actually, the opposite was found regarding
equipment properties; see Table 1-9 and Table 1-10.

7.2 Summary

In summary the previously identified driving forcésr energy-related behavior with respect to
electricity/lighting use are grouped and listedable 1-16.

Table 1-16: Driving forces for energy-related betwawvith respect to electricity use. For the
explanation of the colors used we refer to the helgenderneath, the symbols used in the legend
are explained in .

biological | psychological | social time physical building/equipment

environment properties
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Level of electricity
consumption
Number of
appliances

Importance
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8. Cooking

For cooking purposes, many different appliancesbmnsed such as microwave ovens, ovens, stoves,
pressure cookers, kettles, etc. The type of equipmsed, their corresponding energy consumption,
and the number of meals prepared will determineggnese for cooking.

Cooking activities are usually performed around Intiezes. Based on time-use data, cooking patterns
have been modeled in the literature, see e.g. [R81. In this investigation, it is shown that the
measured and modeled curves for cooking correspprtt well, despite the simple modeling
schemes that have been applied.
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Figure 1-24: Example of modeled and measured cgottémand during four successive days for one
household, see Ref. [98].

8.1 I dentification of driving forces

Only very limited information on driving forces faccupant behavior related to cooking has been
found in the literature.

A recent study on electricity use by European hbokis, Ref. [99], showed the following: Pressure
cookers, which are vergnergy efficientare not widely used in Europe. The use of a fidte pan
while cooking can have a significant impact on #mergy used for cooking. The best behavior of
always using a lid while cooking varies from 8%@anmark to 71% in Belgium and Portugal.

The presence of an open kitchen leads to a reduofieenergy use compared to the absence of an

open kitchen, probably due to the heat gain by icmp&nd the use of kitchen appliances. An energy
reduction of 1.7 GJ per year is possible. See [R4f.
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9. I nteraction between behavior and other issues

Information in the literature on the relationshiptween different types of energy-related occupant
behavior is limited. Some aspects found on theticgiship between different types of behavior are
discussed in this section as well as other issaementioned in previous sections.

Occupant behavior related to heating is not amaiedl phenomenon, but rather a combination of
driving forces that must be analyzed in relatioreémh other. Ref. [2] finds that heating behavsor i
typically influenced by the combination of set-poiamperature combined with window opening in
Danish homes without mechanical ventilation.

The homes used in the measurement portion of Refwgre mostly naturally ventilated and used
thermostatic radiator valves as heating controlstr&ng correlation was also found between window
opening behavior and indoor temperature set-pouming the cold season, making it difficult to
ascertain which influences which behavior: indcetroint temperature or degree of window opening.
Homes have become increasingly airtight since Wdat2 construction making it increasingly
important for occupants to open windows for suéfiti fresh air supply. However, as the indoor
temperature is affected by the extent and duraifomindow operation and vice versa, it is diffictot
study these two parameters in isolation from orahear.

Similar to the findings in Ref. [2] that occuparitave established behavioral patterns that are not
coupled with environmental factors, some intervieweccupants in the Viennese low energy

cooperative also opened windows due to establisheching and evening routines, as opposed to
opening windows as a reaction to microclimate coow. The time of day then becomes a driving

factor, see Ref. [20].

In Ref. [100], multivariate regression models haeen developed for window opening, fan usage and
interactions with the sun shading device based ata ddom a semi-controlled climate chamber
experiment in an office environment. They found: tlea the window opening behavior, the fan state
has a significant influence as well as vice veiga (he window state influences the fan statee Th
usage of the sun shading device was influencethdgtiate of the window, but not by that of the fan.
The state of the sun shading device did not hasttestically significant influence on the otherotw
interactions.

There are several studies dealing with the usdadiag systems in office environments, see e.gs.Ref
[101], [102], [103], [104], and [105]. Nevertheless literature review on the use of sun shading
devices in a residential environment did not rexaealibstantial amount of publications regarding the
topic of occupant behavior. A variety of literatweuld be found dealing with simulation, advices,
effects on energy consumption, or experimentalistudn automatic sun shades.

According to those studies related to the officeimmment, the devices are not often used. In
Ref. [102] it has been found that 60% of blinds ao¢ being used during their investigation. The
authors of Ref. [101] observed 1.5 actions a dagw@arage, with remotely controlled systems leading
to higher usage (2.1 times a day vs. 0.7 times)eWiised, venetian blinds were found to be either
totally raised or lowered — an intermediate stages whosen for only 6.5% of time. Once a shading
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device is lowered, a drastic change of externaldons conditions is needed to raise the system, see
Ref. [103]. In Ref. [105] it has been observed #&86 of the changes made by an automated system
were rejected by the occupant. The authors of [Re1] extracted the influence of the type of cohtro
system (manual, remotely controlled, or automatediisage.

Whether and to what extent these findings are farethe residential environment cannot be
concluded. The significant influence of sun shadingthe energy demand (e.g. 32% cooling energy
savings according to Ref. [106]), suggests thatemesearch dedicated to this type of energy-related
occupant behavior should be performed.
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10. Summary and conclusions

A better understanding of how energy-related ocotipahavior influences residential building energy
consumption is required for a realistic predictiohtotal energy use in buildings. Energy-related
occupant behavior is related to building controticars (i.e. in order to control the indoor

environmental quality) as well as household or oHudivities.

In this chapter, a literature review of relevanivithg forces of energy-related occupant behavior is
given. Quantitative modeling approaches for desugilenergy-related occupant behavior and energy
use are discussed in in the second chapter.

The energy use of occupants in residential builslings been classified in the following categories:
heating, cooling, ventilation and window operatia@tomestic hot water, electrical appliances and
lighting, and cooking. For these residential eneugg categories, the relevant types of occupant
behavior (i.e. building control actions) have beetussed.

Furthermore, the various types of driving forceseakrgy-related occupant behavior in residential
buildings that have been found in the literatureenbeen reviewed. The categories for driving forces
of energy-related occupant behavior that are djstshed are the following: biological, psycholodjca
and social contexts, time, physical environmend, lamlding/installation properties.

The identified driving forces for the various typefsenergy-related occupant behavior that have been
discussed are summarized in various tables thraighs chapter. These summary tables also give a
clear overview of the references in the literaiarevhich the specific types of energy-related o@up
behavior and their driving forces have been ingestid.

In general, multiple driving forces may (simultansly) affect a specific type of energy-related

occupant behavior. For example the frequency ontplt shower depends of biological, psychological,
and social driving forces such as age, gender, topwf origin, and household composition as

discussed in the section on domestic hot wateis @&ample illustrates the complexity of accurately
modeling and predicting the relationship of shofiequency to domestic hot water energy use.

The identified driving forces can or are being uge@ quantitative understanding and modeling of
energy-related occupant behavior and energy use.

Besides many different driving forces having bedantified for various types of energy-related
occupant behavior, this chapter has also shown khatvledge on some types of energy-related
behavior and their corresponding driving forcemissing. For example, no literature has been found
on driving forces of occupant behavior related techanical ventilation. In addition, very limited
information has been found in the literature onrgpeise for cooking and the related driving forces.

As mentioned before, the various types of ener¢pted occupant behavior are not isolated

phenomena, but rather a combination that shouldvastigated in relation to each other. Information

in the literature on the relationships betweenedéht types of energy-related occupant behavior is
however limited; more research is needed for a&battderstanding of the relationships.
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Furthermore, several studies deal with the uséafling devices in office environments; Whereas, a
literature review on the use of sun shading devicesesidential buildings did not reveal many
publications regarding the topic of user behaviar.what extent the findings for office buildingsear
applicable to residential buildings cannot be sdidre research dedicated to this type of energy-
related occupant behavior should be performed.

Automatic control system are very promising forueidg energy use in buildings. However, possible
discomfort experienced by occupants due to the tdckontrol in the case of automatic control
systems may result in unforeseen re-actions ofpmrtis leading to improper use of installations and
an increase in energy use. This should be investiglurther, and should be considered during the
design of new buildings and installations and tkeintrol systems.

On conclusion, occupant behavior was found as gaphenomenon very different from the way it
is currently implemented into most energy perforogarsimulations. This should be taken into
consideration during the design phase of a newdimgjlin such a way, that there is a high probapilit
that the system is used as designed. One idea voeuld include, a thorough check of the buildings
robustness towards occupants actions in order derstand how the buildings energy use is affected
by unforeseen behaviors.
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1. Introduction

As pointed out in the final report of Sub-Task Glan the report “Driving forces of energy-related
behavior in residential buildings”, occupant belaviloes affect building energy usage. Studies
presented in the mentioned report found that tfieccan be in the magnitude of 3 and above. This
second report of the Task-Force of Occupant-Behdomuses on the modeling of occupant behavior
related to the energy use in residential buildings.

A wide range of driving forces of energy-relatedhdeor was shown to have a significant influence —
these were grouped into biological, psychologicaicial, time, and physical parameters of the
environment and buildings. Thus, the manifold issfiebehavior demands interdisciplinary work
between engineering and social sciences.

But what is meant by behavior? When it comes terattion between buildings and human beings, a
variety of disciplines is occupied by research oergy-related comfort parameters, such as room
temperature and indoor air quality (IAQ). So itwerthwhile to explain how behavior is defined
within the topic of this report.

With respect to the energy-related issues of #qent, the term ‘behavior’ is predominantly meayt b
the following: observable actions or reactions geason in response to external or internal stinauli
respectively actions or reactions of a person w@pado ambient environmental conditions such as
temperature, indoor air quality or sunlight. Instldefinition of behavior, attitudes and motivesaaf
individual which lead to a specific action are matluded. Data concerning behavior often stem from
sensors (e.g. for window opening) in terms of iattics for observed behavior. Another approach is
asking the occupants to rate their degree of aatish with the ambient environment or to ask them
to give information on their behavior, e.g. howeofta person opens the window or for how long a
person closes the sun shading during a given tierogh Both methodological approaches —
technically measured data as well as self-reparteamation from the occupants - are helpful for a
better understanding of energy-related behavioth Bapproaches have their advantages and their
margin of error.

With respect to the complexity of this issue, adiden the models dealing with simulation of energy
performance, some psychological models are presesteowing different approaches to explain
behavior as a result of decisions, attitudes, aitér Different energy-related behavior patteraseol
on different environmental attitudes may play aroi the context of counseling, decision making
concerning technical building systems, or interi@nstrategies for households.

Although there are no general differences in stiergrinciples between natural sciences and human
sciences, the integration of different perspectias vocabulary is not trivial. Nevertheless, tbalg

are ambitious with respect to models at the interfaetween formalistic parameters and real life
processes, especially when human behavior is takemccount.

Models are always a reduction of complexity andraletion, at the same time it has to be guaranteed

that all relevant parameters are considered, namigjgctive physical (environmental) parameters,
personal variables, and the interaction betweesetheo sides. The models are translated into
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computer simulation as a connection of theory axgeement. This includes mathematical logic
processing, by which there may be the risk of cstareting the degree of precision, respectively the
explanatory power of the results: "A computer siatioh does not necessarily guarantee that a theory
is more consistent or comprehensible. Nor doe®gram's successful performance guarantee that the
theory is generalizable, or even that the causethéosuccess are those predicted by the theo8y}: [5

From the perspective of environmental psychologymguter simulation is considered as a helpful
method to look at complex systems and to handletioed problems, but the method is seldom applied
[92]. Computer simulation in the field of occupdmghavior and energy use can serve as an approach
to practical problems in different energy-relatesttings. The models can be used as basis for
calculation of expected energy consumptions as ageNerification of theoretical assumptions about
driving factors for energy-related behavior.

Beyond the calculation of energy consumption, tluelahs could show the potential to face practical
implications such as:

* the fit between building operation and user behajfiatch or mismatch)

» behavior as a basis for building optimization (ungkich conditions behavior turns into
counterproductive behavior?)

» behavior as a basis for interventions (e.g. infagionaabout the building concept, handling of
controls, as well as training for energy-relatetdyeor).

This reports starts with a discussion of the puepas modeling occupant behavior when looking at
the total energy use of buildings and the categtidm of model types. In the following chapters
general (psychological) models as well as modefiable to the prediction of total energy use are
described. In the last section, summarizing prasgec further research are discussed.
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2. Purpose of modeling and model types

This chapter first discusses purposes of modelauypant behavior with respect to total energy ose i
buildings. Based on this discussion, model typeblasfor the various purposes are defined.

2.1 Purposes of modeling occupant behavior

On the most general level, two purposes of modaltwypant behavior can be distinguished:

1) modeling occupant behavior in order to understduaddriving forces for the behavior itself,
and

2) modeling the occupant behavior in order to revisalglationship to energy demand and usage
and the driving forces for variations.

Within the framework of this Annex, the secondhis major concern, while the first may be necessary
to gain deeper insights into the factors leadingaidations in the relationship.

An important question is the degree of detail regfliito reach the set purpose. This is strongly
dependent on the number of buildings, the useilpr@nd the time scale. With respect to the number
of buildings, a single building needs to be deathwdifferently compared to multiple buildings. The
user profile can be made for a known user or unknagers, and the time scale considered can be
short-term (daily, hourly, or down to fractions afsecond) or long-term (season or year). The
occupant behavior can be modeled through scheduldisersity profiles (Type A), stochastic models
(Type B), or agent-based models (Type C).

Table 2-1 gives an overview of possible objectifasthe simulation of occupant behavior, together
with typical time scales and time steps for a ®nglilding, and Table 2-2 gives the same objectives

for a group of buildings.

Table 2-1.0bjectives for the simulation of occugaettavior, and time scales for a single building.

Design Commissionin Operation
Conceptual | Preliminary Final Initial On-going Control
design system sizin model
. & design ¥ e 4 initial fault o
Aim: concept L building code o . predictive
. optimization . commissioning | detection
comparison compliance control
Typical
'Vp . 1 or 2 days
time season, year | season, year | season,year ? continuous
ahead
scale:
Typical . )
1min, 1 1min, 1
time 1 hour 1 hour 1 hour 1 min, 1 hour
step: hour hour

Table 2-2. Objectives for the simulation of occupbehavior and time scales for a group of
buildings.
Design Commissioning Operation
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Conceptual | Preliminary Final Initial On-going Control
olic desi f fault
P . Y . . gno . au' district
. making/ |solar/shading | electricity grid/ detection of
Aim: . . ) ? o energy
solar/shading analysis design of district storae
analysis district storage storage 8
1 day
Typical
'yp season, year, week, week, season, . ahead, 1
time continuous
30-years season, year year season
scale:
ahead
Typical
time 1 hour 1 min, 1 hour | 1 min, 1 hour 1 hour 1 hour
step:

Figure 2-1 gives an overview of additional factimffuencing the choice of a model.

2.2

In order to clarify the approach used for the failog work, six basic types of models shall be dedin

here.

Psychological modelf occupant behavior can be grouped into thoséaeMpg the behavior itself

+ Policy making decisions
» Yearly energy use pred.
+ Commissioning

* Research
+ Study OB

Problem to be solved
Goal of simulation

Target group

» Policy makers

Building designers
Building operators
Researchers

Statistical
Deterministic
Probabilistic
Agent based

Simulation

methodology needed

Input database

Macro level
Intermediate level
Complex level

« Static
* Dynamic

Simulation
tools

Figure 2-1. Overview of factors influencing modebice

Definition of model types

and those related to the energy use in buildings.

Average value modelsise the important parameters for occupant behasharh influences the total

energy use of a building for a selected period. @agdy, weekly, or monthly basis).
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Deterministic modelsuse predefined typologies of families, which giketerministic input values for
computer simulations.

Probabilistic modelsuse parameters and equations to evaluate thelpliobaf an action or state.

Agent based modelsnodel occupants as individuals, with autonomousgsa®ts based on rules and
experiences (e.g. memory, self-learning).

Action based modelgdefine “occupant behaviors” as actionsmevemenandcontrol action —that
change the state of occupant location, the operaiate of windows, lights, air-conditioners (AC),
etc., and propose a uniform description for occupavement and control actions respectively.
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3. Psychological behavioral models

A few behavioral models proposed in the literatare discussed below. This is not a comprehensive
review, but rather an indication of the type of mbthat could be used to understand the relation
between occupant behavior and energy use.

3.1 General psychological behavioral models

The theory of planned behavior

The theory of planned behavior (see [2] and FiQu) has been one of the most widely used theories
in environmental behavioral research as well astiver areas of research including building energy
use.

Beliefs about
outcomes
Attitude
towards the
behaviour
Evaluation of
outcomes
Relative - .
importance of Intention |_'| Behaviour
attitude and norm P P
-~
-
-~
-~
i -
Beliefs about —— / P
Subjective / -
what others p s
; norm P
think 7 _
T 7/ //
/
| // i
| //
Percéived

| Behavioural Control

Figure 2-2. Theory of planned behavior.

The theory of planned behavior is an extensionhef theory of reasoned action, which has been
developed in the field of social psychology. Thedelatries to predict behavior as result of a variet
of predictors which determine a person’s intenfiona specific behavior. As predictors a person’s
beliefs and cognitive processes as well as theestig norm have an impact on the intention. The
subjective norm represents the social pressura: person is convinced that people in the social
environment would appreciate the behavior, thisabadr is more likely to be shown by the person.
This model has been extended by including the bkrigerceived behavioral control’ which is based
on the principle that one’s belief about how difficor easy a behavior is influences their decigmn
conduct that behavior [37].
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The MODE model of attitude-behavior processes

According to Fazio et al. [24], behavior is not kestvely rationally based and consciously reflected
The link between attitude and behavior comprisestiemal aspects and irrational decision making
processes. Fazio and colleagues developed the M@D#&el (Motivation and Opportunity as
Determinants) of attitude-behavior processes [Pdiiiag that attitudes can be accessed spontaneously
or deliberately; they are mostly a mix of combirsdomatic and controlled processes [24]. Most of
the activities of daily living are less elaboratatwl consciously reflected: “The ease with whichalle
engage in normal social discourse in itself sugg#sit much of our behavior is spontaneous rather
than the planned outcome of some reflective prog@d$ In situations where persons are
unmotivated or under time pressure, automaticatigessible attitudes relevant for the specific
situation are more likely to be activated. The wation for a specific activity has to be balanced
against competing motivations. More effort for @dfic behavior is more likely to lead to avoidance
or denial instead of approximation to a certainawgdr. In this process, attention is focused more
upon negative aspects of an object or situation.

The “modified norm activation” model

Figure 2-3 shows a model which was developed tdaéxpltruistic/moral decision making. It takes
into account the activation and influence of pessamrms on behavior, and also addresses moral
motivation which must be balanced against other pmimg motivations [57][43]. Competing
motivations could possibly be saving monetary drdwéoral costs, such as changing clothes instead
of just altering the heating set point. Often bébial costs lead people to not behave in accordance
with their personal norms regarding the environméiie model integrates external influences, e.g.
comfort, price of behavior, and social expectatioas well as internal influences. Especially in
contexts with highly repeated activities of dailying, persons develop stable patterns of behavior;
therefore habits play an important role in this wlodAn important aspect of this model is the
assumption that the decision to not behave in decme with one’s normal activities may lead to
defense mechanisms like denial of responsibilityedefinition of a situation (e.g. negating a pesbl

or abilities). Thus, the model is applicable tontly constraints and possible risks of implemegtin
soft measures [43][57].

Attention Motivation | Evaluation Denial
Stage Stage Stage
i + Denial of Nead
. A i « Personal Noims « Feelings of =

@ N:e:m“” + Social Norms Gu""‘:?“'ﬂa“ion ———
g » Awareness of | » Shame/Pride + Denial of Control
S Conséquences ¥ MonMmarit Aspders
% {e.g., economical) | = Furiher neg/pos.
[ + Perceived consequences of
s Behavioural behaviour 0.9,
- Control monatary costs)
® J .
2 A Behaviour
@ —

-

-

-

-

™

D} Habits

Figure 2-3. Maodified norm activation model [57].
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The “knowledge-desire-ability-action” model

The social-psychological knowledge-desire-abilitfi@an model, Ref. [21], is based on the awareness-
interest-desire-action funnel model by E. St. Elpswis (see Ref. [88]). In this framework, various
stages leading to certain behaviors can be disshgd, see Figure 2-4.

>know|edge > desire > ability > action ==

Mo causal
relation

Sender Personal attitude Confidence in Intrinsic

sound source positive attitude personal ability stop everyday behaviour
concrete advice prejudice personal influence formnulate goals
Recipient Social environment Capability of Not mtrinsic

open rminded role model planning priming

understanding message modelling behavwiour agreernent with others  activate positive attitude

Figure 2-4. The “knowledge-desire-ability-actioraimework, translated from Ref. [21].

This framework can be used to investigate behalvidrange. In this framework, not all stages are
required in order for certain behavior to emerger Example, consciousness (knowledge) not
necessarily precedes a positive attitude (desivhgreas a positive attitude not always results in a
certain behavior.

3.2 Theoretical behavioral models and frameworks with espect to energy use in residential
buildings

The behavioral model for residential energy use

Van Raaij et al. [68], propose a behavioral modelrésidential energy use. In this model, theyteela

personal, environmental, and behavioral factomntergy use, see Figure 2-5. Furthermore, Van Raaij

et al. discuss the determinants of household enesgyin detail; they distinguish between socio-

demographic factors, family lifestyle, energy psicenergy-related behavior, cost-benefit tradeoffs,
effectiveness and responsibility, feedback, infdroma and home characteristics.
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Social~cultural Building Climate,
and Design Season,
Environment Requirements Weather
A
H Fold _| Characteristics
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| 1
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I
. S y

Feedback Information
[y
b e e e e e m e —mm e = Feedback }-— —

Figure 2-5: A behavioral model of residential engigse, by Van Raaij et al. [68].

The central parts of the model are energy use nadyg-related behavior where purchase, usage, and
maintenance-related behaviors are distinguishedhighn model, home characteristics directly affect
energy use, and also influence behavior. Feedlmagslare present for the evaluation of energy use
and behavior. The content of feedback informaticay he the amount or costs of energy used, or a
comparison with earlier periods or other househdlde shorter the feedback period or the better the
correlation to a specific activity, the more effeetthe feedback will be.

The five factors in the circles in Figure 2-5 cam &pplied in an energy-conservation campaign.
Feedback information on energy costs is more e¥ecfor reducing energy use than general
information on energy savings. General informatioth probably be the least effective since it hiag t
longest path to energy use compared to the ototarka

The “needs-opportunities-ability” model

Another useful conceptual framework for understagdhe role of occupant behavior in relation to
energy use is the “needs-opportunities-ability” ®lad@dNOA) of consumer behavior; see Ref. [25] and
Figure 2-6. This model can be used for explainiegavior.
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—pp| Technology Economy Demography Institutions Culture

Needs Opportunities Abilities
Relations, development, comfort, pleasure, work, Availability, Financial, temporal,
|—p health, privacy, money, status, safety, nature, advertisement, prices, spatial, cognitive,
freedom, leisure time, justice shops physical
| Motivation | | Behavioural control |

p—

| Consumer behaviour |

v
l Subjective well-being, environmental quality ‘

Figure 2-6: The Needs-Opportunity-Ability model émnsumer behavior, Ref. [25].

In this framework, the consumption of energy useditven by five kinds of driving forces:
technological, economical, demographical, insttdl, and cultural developments (TEDIC complex).
From left to right, these driving forces vary frdgasy-to-change” to “hard-to-change”.

Needs and opportunities determine the motivationaissume. Opportunities and abilities determine
the degree of behavioral control people have ireofdr a certain kind of consumer behavior to
emerge, whereas people need to have both behavmrabl and motivation to do so. Opportunities
are external conditions, such as availability andeasibility of goods, available information, and
prices. Abilities are internal capacities of indivals or households to obtain equipment and sexvice
financial (income), spatial (space at home to sgweds, distance to shops and services), temporal
(time spent on holidays), cognitive and physicabn®g and skills (health and fitness).
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4. Modeling of occupant behavior for energy demand preiction

Occupant interactions with building systems leadht® impact of the occupant on building system
performance (e.g. indoor environment, energy comsiam, etc.). These interactions can generally be
broken down into two aspects: one is the metabwiat gain produced by occupants (the so-called
passive effect); the other is the usage or operatiduilding device objects (windows, blinds, ligh
air-conditioners, appliances, etc.) that satishsaits of occupant’s needs (the so-called actifecs.

The ways occupants interact are illustrated by feid7.

Air-conditioner

Building

Indoor

; environment
impact

Energy
consumption

Occupant

Figure 2-7. Interactions between occupant and bngdystem.

To evaluate these impacts, the occupant heat gairthe states of device objects are needed in the
building energy simulation.

For one room in a building, the amount of occupaeat gain is determined by the metabolic heat
production per occupant, the number of occupanthiénroom, and the uses of devices that usually
happen when the room is occupied. Both aspectsafpant interactions with the building system are
related to occupancy (i.e. whether the room is pemiand how many people are in it). On the other
hand, the state of each device object is regarddtiearesult of occupant control actions that ckang
the device object’'s state. Once one action of kirisl happens, and the device state at a previous
moment is known, its state at the current momedéetermined.

This chapter presents the theory and backgrouratdeny the modeling of occupant behavior and the
implementation of the derived models into compsigrulation. This chapter is divided into the three

modeling approaches defined above: average valieéstministic, and probabilistic together with the

agent-based and action-based modeling approaches.

4.1 Average values models

In a review of building energy use models, Zhao &maoules identify four models which use

average values [104]. The work by Yao and Steemses cluster analysis to create five occupancy-
based domestic load categories for predicting deityl energy consumption to size residential
renewable energy systems [101]. Rice et al. usdatabase of actual user inputs based on crowd-
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source inventory data to model the end energy Thke. heat emitted by electrical appliances is
included in the calculated indoor set point tempees Heating and cooling loads are estimated s th
movement of heat through the building envelopeeiation to a single indoor set point temperature
and outdoor temperature. The building model is ceduto a single U-Value for all envelope
components [74]. Wang and Zu also consider intenealt gains from electrical appliances in their
model, as a thermal network of lumped thermal ni@ds The Wang and Zu model simplifies the
building envelope using average values based datilyeavailable physical data based on a frequency
character analysis. Genetic algorithms are useddwtify key model parameters. The final model
reviewed by Zhao and Magoules is the model propbsedik et al., wherein a simplified model for
predicting the cooling load for different builditgpes results from the combined results using ketai
simulation tools. This model predicts the simul@recooling load for different buildings types [1.02
Table 2-3 below summarizes a few examples of aeckadue models used to represent occupant
behavior in building energy use analyses.

Table 2-3. Examples of occupant behavior averadggevanodels.

Author(s) Analysis Simplified occupant Purpose of
methodology behavior model simulation

Yao and cluster analysis end energy, heating, | domestic

Steemers[101] cooling, and DHW use | renewable energy

daily profiles systems sizing
(Final design)
building total
energy use
prediction in
operating phase
(Operation)
internal gains as thermaldetermining key
network of lumped parameters for

Rice et al. [74] crowd-source internal heat gain from

inventory database people and appliances

Wang and Zu[94] | genetic algorithm

thermal mass thermal
performance
prediction
(Conceptual
design)

Yik et al. [102] combination of hourly-based profile of | cooling load
detailed simulation presence, lighting, prediction
results appl!an_ces, and (Preliminary

ventilation rate :
design)

Seif et al. [84] random numbers end energy, heating, | heating load

cooling, and DHW use | prediction
hourly profiles (Preliminary
design)

Although the studies by Rice et al., Wang and Zwj &ik et al. focus on office buildings, the
grouping of energy-related user actions and passffects to build average value models can be
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similarly applied when considering large scaledestes with a large number of similar or identical
dwellings, e.g. high-rise apartment buildings, ections of low-rise buildings, or student residence
Predicting total energy use for individual singhenily homes has shown to be more challenging as the
statistical sample is one, and the energy useleridii single houses can show great variance fimn t
current estimations based on average values [4d]s,Tthe energy use profile has been analyzed in
greater detail in single family homes to considesrenvariables and to improve the accuracy of
average values models [74][101].

Data collection

Models based on average values use data inputsuin dategories: climate, building envelope,
building systems, and occupant behavior. As thensi¢a obtain the average values for the models
can be quite complex, the level of required detaileach category depends upon the type of
information that is available, the factors consatdkin the model, and the purpose of the model.

The purpose of the model will define the data stmecto be collected. Mahdavi presents an example
of a structure to organize monitoring data to applyoccupant model development. He groups the
effects of occupants as passive and active, andedepassive effects as the “effects of peoplenen t
hygrothermal conditions in buildings” which are tsd by the ‘mere’ presence of people in the
building [55].” Active effects are further definexs the actions taken by people to manipulate their
environment to create their desired indoor condgidJsing this terminology, the passive functiofis o
people such as the release of heat, moisture abdrcdioxide can be considered as constant rates in
average value models.

Mahdavi further categorizes the relationship ofvaceffects as “states” (S) and “events” (E) where
states relate to a steady or slowly changing camgiand an event involves a change of state. Table
4 presents an overview of the proposed organization

Table 2-4.Proposed observational data organizatminoccupancy, presence, and actions in
buildings [49].

Data | Type Mlustrative instances
" System-related (E,) Switching lights on/off
5 £ | Occupancy-related (E,) | Occupant entering into

(or leaving) an office

System-related (S,) Position of
shades/windows

Indoor environ. (S)) [luminance level

States (S)

Outdoor environ. (S.) | Outdoor temperature

Occupancy-related (S,) | Room occupied/vacant

Various sources of data are used for the models asmational statistical databases [101], time-use
surveys, monitoring data of case study buildingd,[fjuestionnaires and surveys [22], crowd-source
inventory data [74], personal observations, antdimg simulation default values to name a few.
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As an example, Seif et al. [84] constructs an cantipehavior model using data from various sources.
The questionnaire results from Einfalt et al. [B#ms the basis for household electricity use,ameti
population censuses determines the range of holgsgtmpulations, and desired a set point
temperature is taken from literature research. frata various sources is similarly collected fonext
models using average values.

Model development

Each model considers the criteria listed in O toywey degrees, taking different approaches to
construct the specific model. Top-down models assesrgy from a supply perspective; bottom-up
models consider individual end energy uses to cocish holistic summative profile for individual,
categorical, or large scale applications.

Probable passive and active occupant effects wamgased according to the following criteria:

» the number of people in the household, categodzedrding to the number of adults and
small children
» the presence probabilities in different rooms
» the ventilation habits per room according to peasg@nofile type for one window type and
two opening positions [46]
» the room type, room use, and adjacencies
» set point temperature of each room
» internal load profiles based on radiated heat fpgwple and appliances, and the energy used
by appliances [22]
Individual energy-use profiles are created usinmgdoan numbers to stochastically generate a set of
different behaviors representing a population.his tase, a set of 500 user profiles were generated
and used as the input parameters for whole builsiimglations of a single detached family home. The
quality of the house construction was also varietiveen three building standards: existing — to
represent houses built to 1970’s housing regulatiover 60 kWh/m2a); low energy standard
(between 15 to 60 kWh/m?2-a), and lowest energydstah(below 15 kWh/m2-a). The whole building
simulations thus generated a set of 1500 outputhéabovementioned user profile set.

Figure 2-8 illustrates the process by which theaye values are determined and validated. The boxes
represent calculations and the symbols represdaptitsu HED (500) is the set of 500 heating energy
demand outputs from the building simulation, HRR is the averaged heating energy demand
calculated using the monthly balance method, HER is the averaged heating energy demand
calculated from the whole building simulation,.J is the average interior set-point temperatuyg,q

is the average value for internal heat gaigg,isthe average air change rate.
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Figure 2-8: Process diagram of determining and fy@ng average values for the heating energy

demand.

Figure 2-9 shows the probability distributions fbe three building standards for the 500 user lgrofi
set. As can be seen, the positive skew increagbsnereasing building quality. The sensitivityttee
overall impact of user behavior has a tendencyetmine greater with better insulated buildings. The
average total heating energy demand is estimatdx tgreater in the poorer insulated single family
homes. However, there are also cases which showopesite, i.e. higher energy use in better
insulated homes and less energy use in less iasidatgle family houses.
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Figure 2-9: Probability distributions for the impaof user behavior on heating energy need for a
house built to three building standards: existiig, (low energy (L), and lowest energy (LE).

The outputs from the whole building simulation sate averaged to generate new, more accurate
values representing the occupant behavior in sit@ghely homes:
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» weighted monthly and annual mean air change rafH)Ausing the net air volume of each
zone within the conditioned area

* mean monthly and annual room temperatures

* mean internal loads due to equipment and occupants

* mean electricity consumption due to equipment
The input parameters for average value modelseotdtal energy use in residential buildings are the
mean values for ACH, room temperature, internati$pand electricity consumption. In addition, the
energy need is averaged for each of the investdgadeises which results in the monthly and annual
heating energy need for room heating presentedguré 2-9.
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Figure 2-10: Average values with max and min ranfigeshe impact of user behavior on heating
energy need for a house built to three buildinghdtrds: Existing (E), Low Energy (L), and Lowest
Energy (LE).

As expected, the heating energy demand decreasedaiion with the building standard, the LE
building standard consuming the least energy. Tiagrdm also shows that the range of values
decreases with higher building standards.

Implementation

The application of average value modeling is appatg for estimating total energy use in single
buildings [74][104], single family homes for large very large sample sizes such as a building stock
or national level residential energy use analy8d§ ppr also to predefined building categories [74]

Model validation

Figure 2-11 shows a comparison of the average gragmand calculated using building simulation
for a population of 500 single family householdéngsthe above described average values and the
monthly balance method. The results showed goagledion, especially for the LE standard.
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Stochastic Simulation = Average Values
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Figure 2-11: Comparison of whole building simulatiesults with the monthly balance method
average values.

The monitoring results from three lowest energy tAas apartment buildings also support the
average value model for estimating the total energgy in cases of residential buildings with many
inhabitants [11]. The various energy use patterpsti®e inhabitants result in average energy
consumptions that equal the energy use for hedtioigywater, and household equipment for different
large buildings [11]. The larger the building, tleeger the sample set, and the deviation from the
average becomes less with greater numbers of liviitg.

4.2 Deterministic models

If an occupant is exposed to the exact same condith number of times, (s)he will not react in the
exact same manner every time. As a consequencdetisrior of occupants will by nature include
elements of randomness. Building simulation tosigslee other hand, are based on heat transfer and
thermodynamic equations, which are deterministigpidally human actions (operation of lights,
blinds, and windows) are modeled based on predéfiived schedules or predefined rules (e.g. the
window is always open if the indoor temperatureeexts a certain limit). These tools often reproduce
building dynamics using numerical approximationseguiations modeling only deterministic (fully
predictable and repeatable) behaviors. In suchya aa“occupant behavior simulation” could refer to
a computer simulation generating “fixed occupantesiules”, representing a fictional behavior of a
building occupant over the course of a single @&}.[Often, the occupant behavior is not specifjcal
addressed in the simulation programs, but only rfeadey means of its effect e.g. the infiltrationera
may be modeled as a fixed value that does not ey time, with the assumption that occupants will
manipulate windows in order to reach this infilioatrate.

Data collection

The internal environment of buildings is determirt®d different energy sources and methods that
evolve at different rates. The main sources caiddrtified as:
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1) Outdoor climate, the main variables of which (imstbontext) are: air temperature, radiant
temperature, humidity, solar radiation, wind spaed direction

2) Occupants that cause an unpredictable building ggnererformance because of their
metabolism, and their behavior related to the gnerge (use of electrical equipment or
building systems to control the building indoor gamment)

3) Auxiliary systems

Input data in current simulation tools “hide” belas or preferences of the occupants and users; the
schedule for air temperature for example coverasiees’ preferences in terms of indoor temperatures
The common procedure for integrating the opening) @osing of windows uses fixed schedules of
airflow based on assumed occupancy patterns oritsseessible effect (through hourly air change
rate variation) as inputs.

Model development

A common approach to model occupant behavior ctngfsassumptions based on scientists’ thoughts
or literature reviews [27]. The findings are basadand depend upon the assumptions made.

The literature shows that a variety of assumptioarge been made by modelers about the window-
opening behavior of occupants:

1) A schedule of open windows is assumed based orpaocy, with or without field evidence.

2) Window opening is assumed to be controlled by teatpee, humidity, wind, and/or rain
based on assumptions about behavior. Again fidldeece is often absent.

3) Windows are controlled to produce a given air flate or air exchange rate, and may be more
related to indoor air quality or minimum ventilatiorather than thermal comfort. This
approach assumes the occupant will utilize the windpenings to achieve the design
ventilation rates.

Implementation

Currently, the most common means used to consideupant presence and behavior within
simulation tools is the so-called “diversity prefil This is used in order to estimate the impact of
internal heat gains from people, office equipmant lighting on energy and cooling load calculation
of a single building. The profiles depend on theetyf building (typical categories being “residatiti
and “commercial”) and sometimes on the type of paniis (size and composition of a household, for
example). Weekdays and weekends are usually handiféetently, especially in the case of
commercial buildings. A daily profile (either forveeekday or a weekend) is composed of 24 hourly
values between 0 and 1, each corresponding toctidinaof the maximum peak value. The weekday
and weekend profiles and the peak are relatedpi@rtécular type of heat gain such as metabolic heat
gain, receptacle load, lighting load; they may lasdal on data collected from a large number of
monitored buildings or simply based on common semsetional guidelines. Alternatively, the users
of the simulation tool can also enter profiles tthety deem appropriate for the building in question
An annual load profile for each type of heat gasnconstructed by repeating the weekday and
weekend daily profiles and multiplying them by themk load. To add greater variety to these profiles
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Abushakra et al. [1] have proposed not only to makailable the average diversity profile but also
those of the 10th, 25th, 75th and 90th percenfildsile they suggest the use of the average pridile
determine the internal heat gains, they proposgséothe 90th percentile for sizing of the building’
cooling system.

Model validation

The deterministic approach to modeling the behawiooccupants is widely used. Actually their
predictive accuracy can only be assessed by congpasi output with results from real measured data.
Often, the results of the simulations are not camgbao the performance indicators of the actual
building due to the difficulties associated withaacquisition and shortcomings inherent in even th
most sophisticated program. Empirical validatiothisrefore expensive and time consuming and only
pursued within well resourced projects (like EPS®Rlidation project [103] or BRE/EdF Validation
Project [104]).

Inter-program comparison allows program to be testdis is a particular useful device where the
input models can be established to stress a pkatiaspect known well to be handled by one of the
programs, like occupancy schedules. Sensitivitfyaisallows the influence of input parameters on
output to be determined. This information can thernused to refine the program.

As a result, publications including these sorte@hparisons are very few. This puts a limit to how
well the deterministic models can be validated.

Kristensen and Jensen [45] is an example that sltosvBradequacy of the deterministic (and in this
case, unrealistic) modeling of the occupants’ baan predicting the energy consumption of nine
residential houses.

4.3 Probabilistic models

The first issue to examine is human behavior rdledeenergy usage.

The traditional approaches look at human behawioif ¢hey would behave in a fully deterministic
way: that is to say in a fully repeatable manneorddver, in a design stage some “design conditions”
are simulated, meaning that when the building &ized, the occupants’ interactions with the indoor
environment will exactly coincide with the desigalves during the entire operational time.

However, if we analyze more carefully what happenshe real world, it is easy to discover that
actually, many parameters influencing environmentainditions and human behavior vary
significantly and unpredictably during the entingilbing life. This implies that, for smaller or er
amounts of time, not all the interactions of thédding occupants to control the indoor environménta
parameters would satisfy the assumed requiremeatis iooms.

In order to set up such an evaluation procedurenfodeling the occupants’ interactions with the
indoor environment, some concepts which have beeg lsed in mechanical engineering may be
adopted. In particular, a technique which seentsetsuitable to this task is the so-called “reliapil
based design procedure” of mechanical components.
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The philosophy behind this method accounts fortsistic factors, and the result of the design pces
will be no more a “single value” for the system fpemance, but a probability to fulfill a certain
performance over time.

In this way, the evaluation of the occupant behawiil be not only based on fixed action typologies
(e.g. opening windows if indoor temperature exceadsertain limit), but also on coupling these
repeatable interactions with the building contyatems, with a probability of performing an action.

From a practical point of view, the proposed apphomeans to start with continuous measurements of
both indoor environmental parameters and exterirabte conditions along with the behavior of the
building occupants (such as window opening, thetatgadiator valve (TRV) set point temperatures,
occupancy sensors, etc.), performed in a suffigiembber of areas and rooms representing different
interaction zones in the building. The monitoringripd may be different lengths, ranging from
medium (i.e. one week — or better if repeated fiffent seasons) to long-term time spans (i.e. a
yearly basis).

The simple measurement of physical quantity timafiles (such as relative humidity, temperature,
pollutant concentrations, luminance, etc.) gensrhtegge amounts of information which is difficult to
“translate” into behavior.

In order to overcome these barriers, differentadlit user behavioral patterns (models) were defined
by means of statistical analysis (logistic regmssMarkov chains, etc.) and can now be implemented
in many of the actual simulation tools (such as-E$pPA Ice).

When in the probabilistic approach, models of usdravior are implemented, the energy simulations

show improved accuracy and validity of the resiMsreover, a probabilistic distribution insteadaof
single value is preferred as a representation efggnconsumptions.

83



Occupant behaviour

peni) oo o P

set-point  Shadi

@ [occrs BN vioccis R vioeis N e
1
Model A PROBABILISTIC INPUT

Model B
Model C

./ Occupant behaviour descriptor

0.5
0.4
0.3
0.2
o1
0
[ H 10 15

e

Software

2 Models

Implementation

3 Simulations

PROBABILISTIC OUTPUT

.
L
.
o - f _/ Performance Indicators
e 7
a e 0.5
0.4
0.3
Fixed building Occupant behaviour e
(A
parameters Indoor environmental 0
H s s

conditions

Operation and

+ ROBUSTNESS OF BUILDING DESIGN
A/ —
Absorber the occupant behaviour
ilding lop Fixed -related e
parameters b4
0.2
Building equipment Climate - /\
o R,

Figure 2-12. The probabilistic approach to moded thuman behavior related to the control of indoor
environment.

The procedure to simulate realistically the humahavior is based on a probabilistic approach fer th
evaluation of both input and output parameterss Phobabilistic approach is related to variabitityd
unpredictability during whole building operationrimany of the actual simulation tools (such as Esp-r
IDA Ice).Figure 2-11 shows the different steps esenting the proposed approach and is described in
the following sections.

Data collection

A complete database should include all the parametegarding the possible occupant behavior
driving forces. In particular, as explained in Faial. [22], both external parameters (physical
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environmental and contextual variables) and inferparameters (social, psychological and
physiological variables) should be collected asirmed below:

» physical parameters (air temperature, outdoor tempe, CO2, etc.)

» subjective feelings (thermal comfort, perceived |AGr.) which may be predicted from
physical parameters

» personal factors (lifestyle, hearsay)

* acombination of the above factors

Typically, the data to assess the behavior of thigling occupants can be obtained by setting up a
measurement campaign along with questionnairesigovand answered by the occupants.

The measurement campaign can be addressed to teviieaexternal factors and could be applied
only to one parameter (for example, room operateperature), but may include measurements of
many other quantities (related to the thermal &@ &€nvironment).

Monitoring indoor and outdoor climate variables agtupants’ control actions is to be conducted
preferably on a yearly basis (offices or dwellingddh identical or similar characteristics to lintite
variability due to different envelope typologies imstalled plant systems. A series of variables
concerning indoor environmental conditions (tempesg relative humidity, COconcentrations, etc.)
are to be monitored and meteorological data (wiredocity, global solar radiation, rainfall
precipitations, etc.) should be obtained from matlometeorological stations in the building’'s
proximity. Occupant interactions with controls,lesating set-point temperatures or window positions,
should be gathered by measurements of the mostsamiative zones and rooms of the building, for
example, one TRV in the bedroom and one in thadivbom of each dwelling.

Internal driving forces should be collected by neaf surveys and questionnaires, aimed at
investigating the factors strictly connected toivittlal and subjective data. In particular, users’
preferences, thermal backgrounds, behavioral bacdkgis, attitudes, lifestyles, activities, ages and
genders should be included in the database.

Moreover, as reported in [22], there are some §ipedrivers” having the greatest influence on the
occupant to make an action. These “pre-eminent/edsi are crossing a different field of study,
highlighting the complexity of the research regagdoccupants, but they should be gathered in order
to characterize as much as possible the behavibedjuilding occupants.

Even if the majority of the existing studies mainfigcused on monitoring activities through
measurements, it is important to point out agaiat thurveys and questionnaires addressed to
occupants are also an important tool to properigratterize users’ behavior. Both objective and
subjective evaluations are always sought.

All the data collected by means of both objectine subjective procedures should be analyzed in a
statistical way.
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As a result of the monitoring data analyses by re@drthe statistical analysis, the probability ofrd

a certain action (such as opening or closing thedaiv, turning up or down the heating system) was
inferred for defined behavioral models. User cdntiotions are deduced by means of logistic
regression with interaction between variables, Marghains, or other typologies of statistical asiy
The results are “occupant behavior descriptors’duas “probabilistic inputs” to integrate within
building energy simulation software.

Model development

In general, the existing probabilistic models axpressing the probability with which actions wik b
performed on windows, valves, lights, etc. There saveral statistical approaches applicable for the
development of such models, which will be introdligethe following paragraphs.

Logistic regression analysis

In the literature, examples can be found of regoesanalyses that directly relate energy use in
dwellings to the factors influencing energy use andrgy-related behavior (e.g. thermostat set point
[28], [79].

Another approach can be found in natural scienitesature; here several investigations focus on
relations between energy-related behavior and (gnahysical) drivers of this behavior [61], [70],
[78] and Figure 2-13.
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Figure 2-13: Probability function relating windowening behavior to outdoor temperature, Ref. [61].

According to Ref. [61], energy-related behaviorcisarly affected by physical parameters, but the
relationship tends to be stochastic. For exampéretis no exact temperature at which every ocdupan
would open a window, but for increasing temperatuthe probability that an occupant will open a
window increases.
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In order to obtain a logistic regression modekath time step, the probability of observing a wind
to be open is independently determined by a lagetgjuation including “p” explanatory variableg x
...,Xp, See also [81].

Depending on the model to be derived, for eachabéeithe coefficients for the logistical regression
are identified for different times of day, and dzythe week. The model predicts the probabilityaof
action with a number of variables (temperature, €@ centration etc.) and their possible interastion
For more details see ref. [7], [31], [82].

State transition analysis using Markov chains

A Markov chain is collection of random variablesh@ve the index runs through 0, 1, ...) having the
property that, given the present, the future isditimally independent of the past. At each timepst
actions are modeled by transition probabilitigsffldm state i (e.g. window open) to state j (e.g.
window closed) (i,j = 0, 1) also formulated as kigi models (Equation (1)), withyfe.g. being the
probability of a transition from closed to opendasice-versa for B.

Monte Carlo modeling
A description of the Monte Carlo approach appletuilding simulation is seen in Ref. [54], [65].

Monte Carlo methods are mathematical proceduresdbas the use of random numbers which are
uniformly distributed over the interval [0,1] antserving what fraction of the numbers obey a given
property. Conceptually the method is based on dssipility to perform, using random numbers for
the generation of stochastic variables from variguebability distributions, F(X), i.e. on the
possibility of resulting a sequence of events, X4, ..., Xn, ..., distributed according to F (X).

The Monte Carlo method can be traced back many latmo methods, which aim at the
determination of the parameters typical of comglbgnomena in random nature.

Monte Carlo method consists of building models o§gible results by substituting the probability
distributions. It works by calculating results ovard over, changing each time the random values
from the probability functions. Depending upon thenber of uncertainties and the ranges specified
for them, a Monte Carlo simulation could involve mparecalculations before it is complete. Monte
Carlo simulation produces distributions of possilliécome values. By using probability distributipns
variables can have different probabilities of diffiet outcomes occurring. In this way, it is possital
have more reliable results describing uncertaimtyariables of the occupant behavior analysis.

In literature, some Markov-Chain Monte Carlo (MCM@bpdels have been developed for simulating
occupancy in dwellings; see e.g. Refs. [74][97]

Neural network

Artificial neural networks (ANN) are inductive mddethat represent an alternative approach with
respect to deductive models. In building energy efiad, ANNs are used as a surrogate for analytic
computer codes to evaluate energy flow and systerfonance; i.e. they are useful for forecasting
and modeling.
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The ANNSs learn from key information patterns allogidiscovery of complex relationships between
the variables. The ANNs allow robust processingnefrem noisy data. On the other hand, they
provide a limited knowledge of process mechanisms.

It is well-known from literature that one of the stdnteresting features of neural models is their
ability to handle incomplete data. Several studiage shown in some cases forecasting models for
energy consumption based on neural networks are mogurate, even if more complex than those
based on multiple linear regression.

An artificial neural network is a massively parbliiistributed processor that has a large number of
artificial neurons interconnected through weighteghaptic connections. Connections can be
"adjusted" through a network training process based given pattern rather than on predefined rules
In other words, this process allows the “rule” tlbarnt which is based on the application of ptalsi
phenomena starting from known situations and agfitios to new situations. This feature, and the
relative simplicity of implementation and progranmgp encourages the application in prediction tasks.
In addition, the use of a nonlinear model allowss idtentification of interactions between indeperiden
variables without exploiting complex models. A coomty used neural network architecture is the
Multi-Layer Perceptions. Its basic structure cotssts a set of units organized in layers; each elgm
produces its output applying an activation functiora weighted linear combination of input signals.
The weights of this linear combination are thossoasited with connections that affect the neuron.
The activation function determines a relationstepateen the activation of the neuron and its output.
More details could be found in [105]: the authosedineural network techniques to estimate different
end-uses, in particular space heating and coddipgliances and lighting and domestic hot water.

Implementation

One of the main objectives in developing models docupant behavior is the implementation in
computer simulation programs. With probabilistic dats, this task demands either dynamic
simulation programs suitable to handle probabdigtinctions or the consideration of a group of
people in a steady state calculation.

For the latter, e.g. a group of 100 occupants msiciered, and the probability of the state of aenop
window is translated into the ratio of people havime window open and closed based on the
probabilistic model under certain conditions. Thather simplified implementation was applied e.g.
by Schweiker and Shukuya [83].

Relations for energy-related behavior (e.g. thetatoset point, window opening) found by any type
of regression analysis can be applied in buildinguiation software to predict energy-use and indoor
climate. The factors directly affecting energy us@ also be correctly physically accounted for by
building simulation software in such an approackesen in Figure 2-14.

88



nfluencing
energy use

Figure 2-14: Energy use and factors influencingrggause and energy-related behavior.

The idea is to change from a deterministic approathbuilding energy simulation toward a
probabilistic one taking into account the occupaptesence and interactions with the building and
systems.

Results of the statistical analysis show the pdggilof defining occupants’ behavioral models
building uses and building systems to control tiaobr environment to be implemented in simulation
tools for building energy analyses.

In order to investigate the effect of occupant véra both on energy consumption and indoor
environmental quality, simulations should be runtharmal zones maintaining location, weather file,
and building construction of the monitored buildngn the occupancy schedule, the occupant could
be still considered as always present, but thergbiwf a building’s indoor environment is now
probabilistic in nature; it does not follow predefd controllers or fixed rules. The probability of
adjusting the temperature set-point or opening redeav is calculated in the simulation software on
the basis of the equations previously used to desdhe behavior statistically. Most simulation
programs are deterministic in nature, so therernged to translate the probability of an event mto
deterministic signal. One way of doing this is twmpare the probability to a random number to
determine if the event takes place. As the givabgbility is the probability of doing a certain iact

in a certain time period, the comparison is to @enwith a random number that changes with the
same interval. The action occurs when comparingahdom number with the calculated probability;
the former was smaller than the latter. In this Wag possible to calculate the energy performance
through a performance indicator.

A probabilistic distribution of energy consumptiotgpending on user type is obtained by switching
the random number lists in the simulation program.

Fixing all the parameters related to the energyoperance of the building (i.e. climate, building
envelope, and building equipment), the simulatiame aimed at verifying the influence of the
characterized user behaviors on energy consumpfioisspossible to have a curve of building energy
performance in different situations and for diffreccupant typologies by running a large number of
simulations and substituting a random number lstthe probability of an occurring action. It is
preferable to have a probabilistic distribution éof‘probabilistic output”) instead of a single valu
representing different energy consumptions.

Inarguably, an infinite number of scenarios coulavén been simulated using different comfort
categories representing different user profilestaedefore more outcomes could have been found.
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Indeed, this approach aims to represent a procetiatecould be extended to all users’ interactions
with indoor environmental controls systems suclviemlow operations, heating set point adjustments,
and solar shading operations.

A further step is represented by the applicatiomsd#r models in simulation programs to verify the
“robustness” of the building from the users’ perdpe. Once the user behavior has been
characterized by a model and its impact on eneegfopnance verified with a number of simulations,

it is interesting to check what happens when thi&limg properties and equipment are changed but
maintaining the same behavioral user pattern.

Ferguson et al. [25] and Hoes et al. [33] definedgrmance robustness as the ability of a buildang
handle changes (or disturbances) in the buildirgigironment and its ability to maintain required
performance. Therefore, it is important to takefgrenance robustness into account during the design
process [52].

The procedure is then extended to the verificatibthermal mass, percentage of transparency in the
facade, and shading devices, amongst others. Meless, factors involved in the implementation of
energy programs can be extended to thermal masgmage of facade transparency, shading devices,
or window opening with the aim to understand whi¢hhese have the most influence on energy use
and thus, constitute recommendations for improwgitHing design with regard to energy reduction.
This allows the designer (e.g. engineers, arclsitemt technicians) to select the most robust swiuti

for the building design.

Model validation

One way to validate probabilistic models is to camepthe output of the calculation (a probability)
with a random number. In such a procedure, the incaie be validated using a sufficiently high
number of simulation runs.

The following criteria as introduced by Ref. [3¥]daalready applied by Ref. [81] can be used for the
comparison of simulation outcomes and measured data

Discrimination models

Discrimination criteria are deduced by comparisatween observed and simulated outcomes.
Simulation results may be classified in four graupgositive predicted outcome (window open, P) is
either (i) truly positive (TP) or (i) falsely pdsie (FP); a predicted negative outcome (windovseth

N) is either (iii) truly negative (TN) or (iv) faddy negative (FN). We may then aggregate thesdtsesu
to define:

» The true positive rate (proportion of actual pesisi which are correctly predicted positive):
TPR =TP/(TP + FN),

» The false positive rate (proportion of actual naget which are wrongly predicted negative):
FPR = FP/(FP + TN),

» The accuracy (proportion of correct classificatjons
ACC = (TP + TN)/(P + N).
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These criteria allow for a good understanding af #bility of a model to correctly discriminate
between periods where windows are open and cloeid. however not possible to faithfully
summarize this ability in a single figure, so ttiase indicators should be considered in combinatio
Overall proportion open

Based on the total survey duratione&  and the total window opening timeypdno: We define the
overall window opening ratio for each office aged = Topentof Tmeasitot ThiS criterion allows the
general coherence of the total predicted openimgtiun to be checked.

Number of actions

In order to check the coherence and the dynamicscofipants’ actions, the observed number of
actions, Nt obsper day is compared with the simulated actiong,sN

Median opening and closing durations

The delays between actions, or alternatively thatitins windows are left open and closed, is amothe
indicator related to the dynamics of occupants’dwidr. In order to reduce the influence of extreme
values, the medians of these durations ratherttteamean values are considered for evaluation.

4.4 Agent-based models

Agent-based simulation models are being used totgatavely study multi-agent systems in which

agents are autonomous, and interact with each atiéitheir environments. The behavior of agents
and the interaction between agents are resporisibtee global development in a multi-agent system.
The agents may be very different objects varyimmfrindividual human beings to components of
energy networks. The agents are in a specific sthte specific time during the simulation. Due to
interactions with other agents the state may chamgetime.

An agent-based model for simulating domestic usbialior can be used in a co-simulation with, e.g.
a building model.

Agent based modeling is based on a bottom up aplpréfocuses on individual behavior and local
interactions. Simple behaviors at a micro-level vasult in complex behaviors at a macro-level.

Data collection

The agent-based modeling approach requires a databat should include information concerning
the driving forces of energy-related occupant bavawncluding social, psychological and biological
driving forces, as well as driving forces relatedthe physical environment, building/installation
properties, and time. See also the report “Driviagces of energy-related behavior in residential
buildings”.

This data could be gathered with questionnaireletdilled in by occupants and could possibly be
obtained by means of measurements.
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Model development

A bottom-up approach is used in the model developrite agent-based models. Individual behavior
and local interactions are accounted for. Behavadragents and interactions between agents at a
micro-level will result in more complex behavior @tmacro-level. Agent-based simulation models
generally consist of the following main elements:

» generation of a physical environment

» generation of an agent population in a specifitestad located at specific places in the
environment

» definition of agent needs, beliefs, and behaviod, miles for interaction

» simulation: agents are allowed to behave and ioteviah each other and with the
environment

» observation of what happens during the simulation

These main elements for an agent-based model watignuser behavior and domestic energy use can
be made more concrete, see e.g. Ref. [51].

The physical environment involves time (e.g. miftubeir/day/month), space (e.g. kitchen, living
room, bathroom, etc.), and objects (e.g. heatingtesy, windows, blinds, lighting), physical
parameters (e.g. temperature, humidity, lightirase).

The population of agents may refer to e.g. famithier, mother, son(s), daughter(s)) or visitors
(friends, neighbors, relatives).

User behavior in dwellings is considered to coroespwith user activities in order to satisfy their
needs depending on the physical environment. Time behavior refers to the actions of an object.
Some needs have to be met in order to survive, e@lseother needs make people more comfortable.
(e.g. a person enters a room having a temperatur® degrees; the person believes he is feeling col
and wants to increase the set point of the healystem. If other people are present in the roohgrot
behaviors then increasing set point could resulthsas putting on other clothes. An example for a
causal model for user behavior at home is giveRéh [51], see also Figure 2-15. In this figure a
person’s psychological state and contextual elesnéng. environmental factors, time of day, other
people) are denoted respectively by “inside caws®l “outside cause” of a person’s need. The
abbreviation “CC” stands for causal condition. bise a causal condition is satisfied, an effect is
created.

In order to perform agent-based simulations, thelehdias to be implemented in an appropriate
software environment; see next subsection. In acapplications, the simulations may also be co-
simulations: the (agent-based) behavior simulaitbrewchange data with, e.g. a building performance
simulator.
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Figure 2-15: Causal model for residential user beiba [51].

Implementation

With the implementation of agent-based models immater simulation programs, it is possible to
quantitatively analyze the global behavior in atiragent system. Several computer programs may be
used for agent-based modeling of occupant behawidrenergy use, e.g. Repast [73], Mason [55], and
Brahms [84].

The Repast Suite is a family of advanced, free,apeh source agent-based modeling and simulation
platforms that have collectively been under corgimidevelopment since 2003. MASON is a fast
discrete-event multi-agent simulation library cevdtten in Java. MASON contains both a model
library and an optional suite of visualization ®dah 2D and 3D. Brahms is a data driven (forward
chaining) discrete-event environment usable forutition purposes as well as for agent-based
software solutions requiring the use of intelligagents.

Such programs have been used for simulating emetgied occupant behavior and energy use in
buildings [42], [51], [80], [84], [101].

In the following, the Brahms environment will besdissed in more detail. Brahms, acronym for
business redesign agent-based holistic modelintgrsysis a simulation environment that can be
applied to simulate and analyze the behavior opjgeover time. It has been applied in Ref. [42] for
simulating domestic energy-related occupant behavio
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Brahms focuses on communication between peoplegpast social behavior. Social and behavioral
elements are required for a dynamic behavior. BthBrs, the following concepts are key elements:

a)
b)
c)
d)
e)

)
g9)

Facts which represent the physical state of the#@mwent; they are global and can be seen by
any agent of an object in the environment;

Beliefs that differ from agent to agent; agents i@son about their beliefs and they can also
communicate their beliefs;

Activities as an abstraction of real-life actiohatthelp to accomplish a task;

Work frames are condition-action-consequence rilfi@scondition is true, then the
corresponding activities are performed. Consequeamthe facts of beliefs that may be
asserted when a work frame is executed;

Thought frames define deductions referred to adyrtion rules. Thought frames are similar
to work frames, but are actually inferences an aagerkes without executing any activities
Communication are activities transferring belietsi one agent/object to the other
Detectables are mechanisms by which an agent eciinay notice a particular fact that
occurs in the environment. The noticing of a faalyraause an agent or object to stop or finish
a framework.

A screenshot of the graphical interface of the Bralenvironment containing results of a simulat®n i
displayed in Figure 2-16.

94



i (3
I JUSBE-Li}| M-LUOSDIUNWALD
SO0l Suny

e ake BJIM OL PUBGSNH L he

_— = T P
QO youn :ed |~ anopy aJNIIB) 1MD “apem ed AL ymem ed
WO YIUNT M s [ DR LM M “jalay M “EAA M ALTUDIBAA I
pueasnH Juahie [

w4 L Zh

Juamnesay wooBuwy

J9||sgsounouLE

R weopeowq |~ S R | o
8991 AWl sy
PUBGSNH OL I PUBGSNH OL S
i L) e D S

afipuy u pooy ing ed
POOJ I 1M 1M

O younT ed | anopy wuu _ " anojy N0 YIUN| 0) UBlg I | T A0 U [ESIBARHO | SYBIEIIUNLLILIOD JMDY pood oo ed | ojes ed AL ymem ed
IO YOUNT BM M | O M M N0 UIUNT URld M | 10R8Y LM |RAWANRHO [HSY M 1M DOOS™HOOD a4 | ““DIRAR M ALURAN
8 (6] (4] 8}

IR JuBfe (3

Wd OEEL:ZE T)

wioofiuwg

95

Figure 2-16. Brahms graphical interface. Simulati@sults showing social agreement between agents
to go out for lunch.



In this example, the top horizontal bar represagints movements to different locations (e.g. from
the living room to the kitchen). The black horizalnbar displays the time in the agents’ environment
The blue horizontal bar shows work frames contgrégomposite (represented by “ca”) or primitive
(represented by “pa”) activities. The yellow horital bar below the primitive activity shows thaéth
agent is interacting with objects in the environinen

Yellow hands broadcast the beliefs from objects #redclock to agents. Yellow bulbs represent the
thought frames of agents’ beliefs.

Blue vertical bars are used to represent the coruation between agents and the transfer of beliefs.
The vertical bar coming down from agent “Wife” tgeamt “Husband” at the moment when agent
“Wife” moves from the kitchen to the living roongpresents the wife’s belief to go to the restaurant
which is transferred to the husband.

Inhabitants’ perceptions, cognitions, and groupabedr are simulated using Brahms in e.g. Ref. [42].
An agent model that represents agents includingoapghierarchy and a communication model to
exchange beliefs are included in Brahms. It cao bésused to model human beings interacting with a
domestic environment as active and intelligent &geather than passive participants. See Figure. 2-1

Action = Nt
CORTMEION Cognition
— m
Activity
=~ Model <
nowledge
« Model
Brahms S
Environment
Geography
\ Model

b. PR odel

Perception

Perception

Figure 2-17: Brahms’ approach to map domestic usadravior, see Ref.[41].

Model validation

Data collection from actual inhabited dwellingsiseded to validate the final model results to a&sses
the agreement between the model and the real wanmidi,to assess the assumptions that have been
made in the model about the agents’ behavior atedaction with other agents and the environment.
For a validation study, sufficient and detailedadate required.
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4.5 Action-based models

Action based models exist for occupancy as welloaghe occupants’ actions. In the action-based
model, occupancy is determined by occupant locatighich can be regarded as the straightforward
result of occupant movement among building spaedsle the occupant movement process is
simulated by the Markov chain method.

From the action-based viewpoint, the uses of atissof device objects can be expressed by a few
control actions, including opening windows, closiwghdows, turning lights on, turning lights off,
turning on air conditioning, turning off air coniditing, adjusting the air conditioning set point,
turning on a computer, turning off a computer, &ontrol actions of this kind are further expresasd

a uniform function of purely physical parameteracluding occupancy, time, environmental
parameters, the device state, and the states &f ddlvices.

In one word, the movement and control actions @ ¢titccupant become the objective occupant
behaviors that we are concerned with in buildingrgn simulation.

The real behaviors (movement and control actiohgny occupant usually show a complex nature
(uncertainty, variability, and randomness). To eolthis issue, the classification method is
recommended, which is commonly used in biologythla way, based on the uniform formalization of
the description of occupant behaviors, a “pattéan’mode) is further defined. For each kind of @ati

it can be classified into a few typical patternat{grns A, B, C, D, E, etc.). Each pattern hagyacéd
expression with specific quantitative parameterpiired to represent the main characteristic of real
occupant behavior. For example, movement patterr3, And C are defined for buildings of different
types and people of different professions whiletagraction patterns A, B, and C are defined for
opening windows, closing windows, etc. As a resodicupant behavior could be quite simple and
clear. A database of typical patterns can be obtbihrough measurements or questionnaire surveys.

The action based model makes a personalized desorgf the occupant. If all respects of behavior
patterns related to different devices are combirsedtypical occupant” is defined. For example,
typical occupant 1 may be a combination of turn-@inconditioner (AC) mode A, turn-off-AC mode

B, turn-on-light mode C, turn-off-light mode D, et€he difference of occupants from different
regions or countries can be represented in theeaspbuilding usage behavior.

\characteristics
rd Y. T
- s / ~a -
ﬁlestlgatlon / \ v/SimuIation\
__ 7/// ¥ /
SN N
( Analysis ) ( Definition )
N -~/ N -
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Figure 2-18.Framework of the action-based model.

With the pattern characteristics, we can quantibcupant behaviors in investigation, analysis,
definition and simulation. Figure 2-18 shows thenfework of the action-based model. Compared to
other models of occupant behavior, the action basedel has many advantages:

It provides a uniformly defined formulation of ogant behaviors (movement and control actions),
which is easy to understand, use, and extend,;

1) all model parameters are physical, explicit, anitdi handling the time-related, environment-
related, and random characteristics of occuparda\ers;

2) both the Markov process of occupant movement aeddiscription of occupant control
actions are very easy to implement in dynamic sitiohs;

3) an individual model of occupant behaviors is preddwhich can represent the difference
between occupants and leads to an approach fromdandual scale to an overall scale for
building energy analysis;

4) the user interface style of all kinds of devices ba regarded as an independent factor that
impacts occupant behaviors and building performanidee constraints of device user
interfaces to occupant behaviors (control rightgerability) can thus be analyzed in a
simulation.

Data collection

The inputs of the movement model, which could b#ected or calibrated by measurement or
guestionnaire surveys, include:

1) Building typology as the number of spaces,

2) Occupant information such as the number of occugpdmt each internal space and the
accessible spaces for each occupant,

3) Time step (5min, 10min, etc.) and initial locatioihoccupants,

4) Movement parameters such as events and relatéstistdtindices, and movement patterns for
each occupant.

The investigation of the above information is samito that of the traditional method named “fixed
schedule” (or fixed profile). Some additional infmation like the average morning arrival time, the
average nightly departure time, the time proportemd the mean sojourn time staying in each zone,
needs to be provided. If necessary, the inputsbeasimpler based on the need of the real problem.
For example, in some cases only the transition ftbm outside to the inside of a building is
significant while the movement within the indoolasps can be ignored.

The input of each control action model, which candollected or calibrated by measurements or
questionnaire surveys, includes three parts:

Pattern: choose a suitable pattern representingpaot behavior;

2) System status: a set of parameters to describsttiaion at every moment, the input of control
action model, including:
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a) device state: the operation state of device (bedgeeuting any control action);

b) zone occupancy: location of occupant, occupandysi@n arrival or at departure or during
occupancy);

¢) indoor environment conditions: temperature, hurgiditminance, etc.;

d) outdoor environment conditions: temperature, hutpjidisminance, rain, wind speed, solar
radiation density, etc.;

e) other devices’ states (before any action takesplaed state changes (after an action if it
takes place)

3) Behavioral characteristics: the numerical char&ties of a control action, which are fixed at
every moment and the configuration parameters ofrobaction model including:

a) time: i.e. when the action takes place;
b) environmental conditions: indoor temperature, oatdemperature, etc.;
c) statistical parameters: frequency and averageidaraf action, etc.;

Model development

Occupant movement occurs in the spaces inside atgide a building. It can be defined by the
change of occupant location. Here, the locatiothefoccupant refers to the space the occupant is in
Firstly, the scenario of single occupant movemeninivestigated. Secondly, the single-occupant
model is extended to multi-occupant scenarios.

movement = F(location, movement characteristics) (1)

Consider a building with n zones, where a zoneeljed by 1,2,...,n) is an internal space in the
building, and the outside of the building is regatdas a specific space (indexed by 0). Assume an
occupant moves within all the spaces inside andideitof a building. The building spaces can be
regarded as a topology network (closed graph) mwithl nodes, where a node is a space. The location
of the occupant is then expressed by the indexdés.

The occupant movement from any node to the nextbsadetermined by the following matrix of
transition probabilities (denoted by the P matnixhe sequel):

Po Por -+ Pa
Po Py - P
P=( B )(n+1)><(n+l) =0T -
pnO pnl t pnn (2)

The fixed valuep;; represents the probability that the occupant nakt make a transition into spaice
from space. If the previous location of the occupant and tt@asition probabilities held in the P
matrix are known, the current location of the o@nijcan be determined by a random simulation.
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Here, the following assumptions have been maddhé)location of the occupant due to movement
has a Markov property; (ii) any location changehs occupant due to movement can be finished in
one time step.

An event mechanism is proposed to represent theement occurring in certain periods of time; for
example, going to the office in the morning andvieg in the evening. In addition, the event
mechanism is used to treat the relevance of theements of occupants (e.g. a joint movement such
as attending a meeting).

An event in the model is an object representingot@ipant movement for a specific location change.
Each event has a valid period (with a start an@rah time) during which it takes place. A range of
actions can affect the occupants; however it omfijuénces specific occupants. Thus, each occupant
can be specified with different events for his omoevement pattern. The event drives occupant
movement through the P matrix exactly by specifyihg corresponding elements in the P matrix
during its valid period. The probability elementsaciated with the event can be determined from
some statistical indicators of the event. Each eao has a priority that determines the ordehef
event taking effect on the P matrix in case thédvpériods of events have intersections, and these
events have common elements in the P matrix. gditiiation, the elements of the P matrix would be
specified with the event with highest priority.

In summary, an event object usually has six atteibustarting time, ending time, locations (froneon
space to another), participants (taking part inethent), statistical indicators (driving the movenef
participants), and priority (to resolve conflicts).

The key issue of the movement model is to deterthiadransition probabilities in the P matrix. Sinc
the probabilities in the model are event-dependefias greatly reduced the complexity in the time
dimension compared to the pre-existing models. Hewet still seems difficult to directly specifyl a
the entries of the P matrix due to P’s high orderresponding to the number of spaces), espedially
multi-zone scenarios.

An important feature of the model is that a simgtif method is found to solve this problem. The P
matrix can be specified by some statistical indicaidefined for events, which capture the specific
statistical characteristics of occupant movemerd bhave explicit understandable meanings. The
related indicators in occupant movement are the tifinday, duration of stay, and time proportion of
day. The mathematical relationship between evewlictors and transition probabilities are
established. Accordingly, the transition probaigiitcan be calculated from the corresponding event
indicators. This method greatly reduces the nuroberputs of the movement model.

A set of events can be made in chronological otaleepresent the movement process of an occupant
in a building. However, a compromise should be madanit the number of events in order to reduce
model complexity while capturing the major chanipethe occupant movement process.

Using a white-collar office worker as an exampldygical movement pattern in an office building

includes the events: go to the office, eat lunahishh work, attend a meeting, and a random walk;
while a typical movement pattern in a residentiallding includes the events: wake-up, go to the
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office, return home, eat dinner, go to bed, andradom walk. In contrast with office building, the
movement model for residential building would paerinot only the location of occupant but also the
active state (awake or asleep) of occupant.

A movement pattern involving major events and ctiaréstic parameters can be easily obtained
through measurements or questionnaire surveys.tAbdse of typical movement patterns can be
established to apply in an engineering analysis.

The above discussion focuses on the single-occiguamario. However, it is actually easy to extend
the model to multi-occupant scenarios. Only twaiagsions are needed: (i) the movements of each
occupant are independent, thus each occupant $i@svhi transition probability matrix; (ii) occupants
are allowed to participate in the same event ifi@vements of these occupants are driven by the same
event). In this way, both the independence andantiity between the movements of occupants are
considered. In the model, events for typical moveinpatterns are first defined, then the set of &sven
representing an occupant movement pattern arefigeefor each occupant while some events can be
shared by different occupants.

The outputs of the movement model include the sirées of:

a) The location of each occupant
b) The occupancy of each zone (occupied status, nuafleEcupants).

Since the simulation of the occupant movement m®cses a small time step, the outputs should be
converted into hourly values in building energy siations.

Control action model

Control actions are used to describe the intemastibetween occupants and building devices
(windows, lights, air conditioners, etc.). Thestats can be defined by the operation state chahge
device objects, and further expressed by a unitiadtion form with the input of physical parameters
Firstly, the single occupant scenario is investidatiSecondly, the single-occupant model is extended
to multi-occupant scenarios.

Consider an occupant staying in a room who cary fedintrol all devices including windows, air-
conditioning (AC), lights, curtains (or blinds),roputer, etc.

In this model, a control action is defined by thgeation state change of a device. Here are three
points: (i) each control action is connected tpactfic device; (ii) a device’'s operation stater(oed

by state in the sequel) refers to the device $tateor off, open or closed, and the status of aulchl
control variables like the set point and fan speedC) which are usually directly operated by an
occupant via the human-machine interface (HMI) had tevice; the number of states a device has
depends on the complexity of its HMI and can bepsifired for actual needs; (iii) any device state
change leads to an (independent) control actiodewce with n states correspondsAbcontrol
actions wherd®? =n(n 1).Accordingly, three steps are needed to apply &fened method of
control action: (1) choose a device; (2) selectdtades of the device; (3) define the related obntr
actions. Take the light for example. The light baly two operation states (usually)—on and off. Two

101



related control actions can be defined: “turn gt (i.e. the state change from off to on) andrtitu
off light” (i.e. the state change from on to off).

When quantitatively modeling occupant control aasioit is of interest to predict whether an action
has taken place given a set of independent vagableus, the model to describe occupant control
actions should be expressed as a function of wihigloutput is a control action, and the input st

of physical factors that can be calculated, ingegéid, and compared.

As occupant behaviors are random, uncertain, anidbla, so are control actions. It is difficult to
make a comprehensive description of them. In practve can use some numerical characteristics to
reflect their main features. The numerical charsties are generally related to time of day (oele
environment conditions, or statistical charactaristf random variables. They can also be regaaded
behavioral characteristics in daily life. The fuoat body, F, is just an illustration of how the
numerical characteristics shape occupant behavidghis model, a unified function form is proposed
to describe every control action.

Control action = [(zystem status, behavioral characteristics) 3)

The control action model can be illustrated by FégRr19. With the fixed behavioral characteristss
controlling parameters, the model determines whetie occupant would perform a control action on
a device at every moment according to the systatnsst

/ Behavioral
/ characteristics

Y

/ Syst , Control
ystem Control Action Model ———» On. ro
/ status action

Figure 2-19. Schematic of control action model

Control actions for different kinds of devices (apsindow/close window, turn lights on/turn lights
off, etc.) can be described based on the unifieshf@he specific form, inputs, and configuratioris o
each control action model depend on the type oicéeand the type of control action.

From literature research and our everyday expegighere are three basic forms for actual control
actions corresponding to the above three typesimfenical behavioral characteristics: time-related
actions, environment-related actions, and randdrore

It can be observed that many actions usually tdkeepat a certain moment, e.g. opening a window
upon arrival (entering a room) or closing window diparture (leaving a room) concerning the
occupancy status of the occupant themselves; anggkace during a certain period or time of day
concerning the schedule of daily life, e.g. cookagpliances used before meals. These are time-
related actions.

102



The time factor is used as the numerical charatierio describe the actions. This kind of time-
triggered action can be expressed by a simpleinutbe form of anif-statementAn example of a
window opening pattern description on arrival iS@a®ws:

if on arrival the light is off,
thenturn on the light.
(elseno action take place.)

Boolean variables are used to replace the judgfediotving ‘if' to check the momentary condition
and assignment, following ‘then’ to determine whagthn action has taken place in the if-statement fo
computer programming.

The time-triggered action would be repeated pecalt)i in the whole year dynamic simulation (daily,
weekly, etc.).

The control actions related to the use of windoais,conditioners, blinds, lights, etc. are clearly
influenced by the indoor and outdoor environmeataiditions and called environment-related actions.
These actions are usually driven by some envirommhestimuli that depart from the comfort zone
based on the transient demand of people. Througionac people are able to suit the indoor
environment to satisfy their thermal, visual, a¢m)®lfactory comfort, and indoor air quality.

The key numerical characteristic for actions ofthkind is the “threshold” value. When indoor or
outdoor environmental conditions exceed the thrgshan action would take place to adjust the
(indoor) environment.

The kind of environment-triggered action can be agpressed by a simple rule. An example of a
pattern description for opening windows when tradoor temperature is higher than‘@Qwithout air
conditioning) and closing windows when the indaanperature is lower than 16 is as follows:

if indoor t > 30C, window is closed, ang if indoor t < 16C, window is open, ang

The environment-triggered action would be repea®gdhe environmental conditions change in the
whole year dynamic simulation.

Another kind of action is simply regarded as puralygdom behavior without any significant trigger of
time of day or environmental condition, probablycéese the actions happen less frequently. For
example, while watching TV during the weekendstegtiently (once every few weeks) the times to
start and finishing watching television may starytame (turn on TV) and end any time (turn off TV).
The numerical characteristics for those actionsl irs¢his model are frequency and average duration.
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These kinds of random actions can be directly desdrby a two-state transition probability matrix
where the frequency and average duration are oseet¢rmine the matrix entries.

Control actions usually express a compound patiebasic forms, i.e. an action can be driven byetim
environmental conditions, and random factors. Adita to the three basic forms, control actions can
be classified into two groups: i) with trigger caiwhs, ii) without trigger conditions (fully randa).

This kind of action, e.g. opening a window, is @ity triggered by time and (or) environmental
factors, and is also influenced by other uncerfairtors. To describe both the features of action
triggers and randomness of this kind, a practimahfcan be used as illustrated in Figure 2-20.

Input of Trigger conditions true Stochastic 1 Output of
system status checking false prediction 0 action
0o 1 oosction )
ST false | Py Por
cCupancy Time condition 2? (" Noaction )

B true | Py Py
Indoor environment Environment
- condition 1?
Environment
Other device’ states condition 2?

H

Figure 2-20. Schematic diagram of actions withdeg conditions

Compared to the basic trigger forms, an additistathastic link to represent the randomness of
action led by other uncertain factors is addedéopractical form. The form first checks if theytrer
conditions are satisfied, then predicts if the actwould take place with the transition probability
matrix,(P), wherepy; represents the probability that the action wikketgplace even if the trigger
conditions are not satisfied (fals@),, represents the probability that the action dodstaile place
even if the trigger conditions are satisfied (true)

Poo=1— Pors P11=1 — Pyp- (4)

0 1
P= false | Py Po
true | Py Pus

5)

In the deterministic case,

Po1=P10=0. Peo=py;=1.  (6)

Actions without trigger conditions (See Figure 2-2te fully influenced by uncertain factors, e.g.

watching TV. The actions can be directly describgda two-state transition probability matrix, (P),
where 0 represents off-state while 1 represenistaie;
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Poo TP =L Py T P11 (7)

Input of Stochastic ‘ Output of
system status prediction action
( Device state ) (" Turnon/off )
— p= 0| Poo Pos S
o~ _— VT
( Occupancy ) (_ Noaction )
e 1[Po Py g

Figure 2-21: Schematic diagram of action withougger condition

Given the use frequencyy (e.g. once a week, which would be shown as 1/7), the average
duration per timef8 (measured in the number of time steps, e.g. 1tiper, i.e. 12 given a time step
of 5 minutes), the entries of the P matrix can éenined by the following equations:

a 1
P =1-—— p, =1-—
00 ,3(1—0') p 3 @)

Note that bothd and [ are dimensionless numbers.

There are two common rules for both kinds of adidi) any action happens only when the occupant
is in the room (except when using remote contmlgch is rare in practice); (ii) the off-state résun
an opening/turning-on action, while on-state resimtclosing/turning-off action.

Although occupant behaviors show great variatitve, hypothesis that occupant behaviors follow
some specific rules is widely used and verifiedthie humanities. On this basis, behaviors are
abstracted to several ‘behavioral patterns’ usedreforesent the main recognizable feature of
individuals’ behaviors. In spite of this idealizati the approach is simple, easy, and effective for
understanding occupant behavior and utilizing ipractice. Inspired by this approach, ‘patterns’ to
describe the control actions are used.

Patterns can be defined in the above practical fafrecontrol actions. Using patterns, we can discuss
the following cases when describing control actions

If a control action is triggered by multiple factoito form trigger conditions it should considee th
interrelation of factors in an order of parallehnabination, and priority, involving: (i) each facto
makes up of one trigger condition (parallel, ‘o(i)) several factors make up of one trigger caodit
(combined, ‘and’); (iii) some of the factors haveopty while others have not.

In this case, we need patterns to finalize thegénigconditions and distinguish behavior habits of
different individuals.

If two or more control actions can adjust the saen@ironmental status, it should consider the
interrelation of these actions in the order of pakacombination, exclusion, and priority actions
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involving (i) no interaction, where each actiongakplace independently, or one would not influence
another (parallel); (ii) all the actions take placethe meanwhile, or one would lead to another
(combined); (iii) one action takes place while @thdo not (exclusive); (iv) some of the actionséav
priority while others have not.

In this case, patterns are required to finalizedtaer of actions and distinguish behavior habits o
different individuals.

In practice, we predefine several (i.e. 3~5) tybaetion patterns which can be extended into future
work. All the patterns should be verified by realld life use habits.

A set of action patterns mounted on a device (vdifiht) makes up a complete description of usage
behaviors of the device. Note that an opening/tgtn action and a closing/turning-off action are
two different things due to different trigger cotioins.

Nevertheless, occupant behaviors are not statibdoeg a long-term evolution. Using static pattéms
describe behaviors is suitable in the short term wuthe stability of occupant behaviors. However,
patterns from a different phase can be used fostilndy of behavior change in the long-term through
comparison and analysis.

The constraints from device operability or contialit can be represented directly in the actiondahas
model in a probabilistic way: (i) for actions wittigger conditions, adjust the valuesmf, andpy4 (a
higherpy5 value represents higher operation difficulty)) éctions without trigger conditions, adjust
the values oft and[3 (a lower level of difficulty).

To deal with multi-occupant scenarios, two assuomstiare made: (i) the control action of each
occupant is independent, thus each occupant hasvnidehavioral pattern for any control action), (ji
occupants have different ‘weights’ (preference emsttivity) for different control device actionsge
some people are more sensitive to their thermair@mwent and they will adjust windows or air-
conditioners more frequently, while others are ngmesitive to their visual environment and theyt wil
adjust blinds or lights more frequently. Of counsgre investigations should be carried out to yerif
this assumption and to obtain the ‘weights’ of guamnis. At present, we assume the weights are equal
for all control actions of occupants.

The output of each control action model is theesthiange of a device at every moment (return a pair
of states to represent the change ‘from stateiate if the action happens. Otherwise, returorfir
statel to statel’, i.e. no action takes place hadlévice state will not change).

The individual-based model provides an integrakdpson of occupant behaviors on all devices and
also provides a simple approach to study the nogltiapant scenarios and explain what would happen

if many people stay in one room or in one building.

Implementation

Implementation of the occupant movement model
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The proposed model has a two-level hierarchicalctire consisting of a basic module named
“movement process” and a high-level module namederies” as shown in Figure 2-22. The
“movement process” module essentially implemengnaulation of the Markov chain process and
generates the locations of occupants step by stieigh can then be used to calculate the occupancy
for each zone in a building. The “events” moduleised to specify the transition probabilities of a
Markov chain in specific periods of time, in ordemrepresent the occurrences associated with time.

Figure 2-23 shows how the algorithm works: (O)iatite the locations of all occupants at time step
0.For each time step, (1) update the set of aetwants at present according to the input set afiteve
and their valid periods. (2) Update the P matrifesll occupants according to the set of activeneye
the corresponding elements of P matrix are speciie the active events, and note that the sum of
elements in each row of P matrix should equal LF8 each occupant, determine the current state of
the occupant according to the previous state aadiffdated P matrix. The MATLAB function rand
generates a pseudorandom value drawn from the asthnohiform distribution. The same is to be
repeated for all occupants. (4) Calculate the atimecupancy for all zones according to the locegio

of all occupants. By repeating this procedure dtgpstep, the time series of the location of each
occupant and the occupancy of each zone in thdibgitan be generated.

Building typology, occupant '_,_' _________________ » Events

and movement parameters
N A Y
. \ Movement process Occupants’ Occupanc
Initial states Yy 1 g P p. pancy
of occupants Locations for each zone

Next time step

Figure 2-22. Schematic of the movement model
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Previous state
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Figure 2-23. Algorithm workflow

Implementation of control action models
Given a pattern for a control action on a devicthwiumerical characteristics, the implementation of
the control action is illustrated in Figure 2-24.
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Figure 2-25.Workflow of
control action models

Figure 2-24.Schematic of each control action

An integral scheme is necessary to deal with tteriielationship of control actions, representingrho
an occupant controls everything in a room. Figugbzhows how the scheme works: (0) initialize the
system status (zone occupancy, all devices’ statdepr environment, outdoor environment) at time
step 0; for each time step, (1) update zone ocaypand outdoor environment; (2) for each occupant,
predict all his control actions on devices accagdim the system status; (3) update all devicesésta
(4) update the indoor environment. By repeating fhriocedure step by step, the time series of the
occupant control actions and the states of devicdse building can thus be generated.

The occupant behavior model made up of movementanttol actions can be easily integrated with
building energy simulation tools. Figure 2-26 itiages the integral workflow: (0) run the module of
occupant movement process and output the zone accyplata (pre-process); for each time step, (1)
run the control action module, predict occupantsitmol actions on devices according to the system
status, and update all devices’ states; (2) runribdule of building thermal process and update the
indoor environment. By repeating this procedur $tg step, the time series of the occupant actions
and the indoor environment in the building can thegjenerated.
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Figure 2-26. Integral workflow of occupant behavimodel and existing building simulation tool.

Based on the integral framework, the impact of petu behaviors on building system performance
can be quantitatively evaluated.

Validation

Movement model

Due to the random simulation, the criteria for modalidation should be whether the simulated
movement curve of the occupant (i.e. the curvecofipant location) is “equal” to the actual statisti
movement curve. The curve depends on which statlstidicators are chosen.

For the movement model, the inputs are alreadysthtistical indicators (i.e. events with statidtica
attributes) representing the characteristics ofiactnovement processes that the model tries to
achieve. Thus, these inputs should be chosen adtdtistical variables in the validation criteriche
validation criteria would be satisfied if (and onifj the outputs of the model—the simulated
movement curve—can keep the same statistical iadim@lved in the inputs.

In fact, our model is based on the mathematicaltimiships between event attributes and transition
probabilities in the P matrix. Thus, if the randaimulation technique and the execution codes are
correct, the statistical indices of inputs wouldnagurally kept in the outputs .This has been ieztiin

the above example.

In addition, the zone occupancy generated by owteikeeps the time and space relevance in a way.
To further approximate the actual movement curveyemstatistical indices can be proposed if
necessary.

Control model

The validation criteria of control action model aimilar to movement model. For the control action
model, the inputs are already the statistical @idics .i.e. the F-pattern and behavioral charatiesi
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represent the characteristics of actual action gg®dhat the model tries to achieve. Thus, if the
random simulation technique and the execution c@descorrect, the statistical indices of inputs
would be kept naturally in the outputs.

More generally, the validation criteria of an ocanpbehavior model should include: (i) how much
the model represents the real process of occupamvior (suitability); (i) how much the model
meets the requirements of practical applicatiomdfcability). Compared to other existing models,
our model is a direct quantitative description o€wpant behavior in a real sense, which has a few
significant advantages (easy to understand, sieudaitd investigate) and shows its great poter@l.
course it needs more investigation and validatiorcheck the capability of this model, like the
example of air-conditioning behavior from a Chinésmily.

Summary

The occupant movement model provides a new apprimadbuilding occupancy simulation and the
use of building devices. Compared to the “fixed eztile” method, this model considers the
randomness that results in the uneven and non-symatis change of occupancy in space and time.
Compared to other random process methods, this Imadps the time and space relevance of
occupancy and is more practical due to the gredwcateon of inputs. This model can provide a
relatively realistic and equitable condition foretlevaluation of HVAC systems, especially for
decentralized systems [150]. The model can pro@dmore realistic and equitable condition of
occupant factors for the evaluation of building teys design, especially for natural ventilation,
daylighting, and decentralized HVAC systems [130is a direct description of occupant behavior in
a real sense. Using patterns, the interrelationshimultiple driving factors, the interrelationship
multiple control actions, and the quantificationunfcertainty are solved. In such a way, the maglel i
simple to understand and simulate. Through the imadeupant behaviors are easy to define and
investigate.

Furthermore, via the patterns and behavioral cheniatics as occupant behavior descriptions, the
action-based model establishes a clear link (sger&i2-27) between building engineering and social,
economic, psychological, physiological, and humactdr engineering sciences. Although human
behavior is usually in the research fields of titéel and is explained as a deep mechanism, ttermpat
description is first needed and the building siriafatechnique can evaluate the influence degree of
occupant behavior patterns on building system pexdioce, which would lead the latter to become the
focus of the most important behavior pattern.
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Figure 2-27. Relationship between different reskdrelds.
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5. Examples of occupant behavior modeling

In the following, several examples are given focuggant behavioral modeling and the implementation
into computer simulation. Each example is introduaed evaluated.

51 Occupancy

Markov Models of Occupancy

Type of behavior Type of Statistics used| Implemented| Validated Reference
model into computer
simulation
(software)

Occupancy office Probabilistiq  Markov, Yes/ No Yes/ No [60],[64].[
Poisson 89],[93]
models

Occupancy dwelling| Probabilistic | Markov model| No Yes [74]

Occupancy dwelling| Probabilistic | Markov model| No Yes [97]

Occupancy dwelling| Probabilistic | Markov model No No
Monte Carlo

Stochastic models capable of simulating occupamtiems for office buildings have been presented
in various investigations; see e.g. Ref. [60], [§8D],[93].

The occupancy model of the Light switch model (R6@]) is a Markov model consisting of three
occupancy probability functions as a function ofiéi of day; five minute bins have been used. The
three functions for arrival, temporary absence, departure have been derived from observed data.
Ref. [89] proposes a Poisson process model withdifferent exponential distributions to simulate
occupancy and vacancy: the occupancy behaviorrendom process. The vacancy intervals were
found to be distributed exponentially, but the gmmcy intervals were not. Ref. [64] considers
occupancy as a Markov chain interrupted by occasipariods of long absence. This Markov model
has been calibrated with data measured in twentyes®f an office building over a period of two
years. The model is capable of realistically repaitlg the main properties of occupancy such as
times of arrival, periods of intermediate absenod presence, times of departure, as well as long
periods of absence.

The remaining part of this section will deal witbcapancy modeling in domestic buildings. In recent
literature, some Markov-Chain Monte Carlo (MCMC) diets have been developed for simulating
occupancy in dwellings; see e.g. Refs. [74][97]e Btochastically-generated occupancy patterns in
Ref. [74] have been used to predict the proporttdndwellings with at least one non-sleeping
inhabitant, see Figure 2-28. This figure shows \gopd agreement between time-use data (points)
and the results based on the stochastic moded! (gnd).
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Figure 2-28: Aggregated active occupancy for alivay participants by weekday and weekend days
taken from Ref.[74].

Analogous to developments in the recent literaf{iré], [97]),a MCMC model has been developed
for simulating residential occupancy and on-demapedce heating (i.e. during occupancy). This
MCMC model can stochastically generate occupandwiellings over time as described below.

For the simulation of occupancy, we have used tise-data collected by the “The Netherlands
Institute for Social Research”, see Ref.[91]. Basedthis data, we have selected three types of
households:

Two elderly families

1) Two working families
2) A family with two adults and two children.

Respondents of the time-use survey indicated thebeu of people in their household. Only one
person filled in the survey per household. Theeefoorrelations between occupancy of different
people in the same household cannot be derived tlhentime-use data and are not taken into account
in the model. The different types of time-use (atigs) are translated into occupancy for specific
rooms in the dwelling. In this translation of timee to occupancy, we distinguished between six
different occupancy types:

1) bedroom

2) bathroom
3) kitchen
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4) living room
5) other
6) not at home

For these six states, 6x6 transition matrices hbgen derived for the cumulative transition
probabilities describing the transition from onatstto another during a time period, see e.g. Eigur
29.

BE-BE  BE-BA  BE-KI BE-LR  BE-OT BE-NH
BA-BE BA-BA BAKI  BALR  BAOT BA-NH
KI-BE  KI-BA  KI-KI KI-LR KI-OT KI-NH
LR-BE  LR-BA  LR-KI [R-IR  LR-OT LR-NH
OT-8E OT-BA OTKI OT-LlR OT-OT OT-NH
NH-BE NH-BA NH-KI  NH-LR NH-OT  NH-NH

Figure 2-29: Cumulative transition probability matr The codes BE, BA, Kl, LR, OT, NH,
correspond with bedroom, bathroom, kitchen, liviagm, other, and not at home.

For these six states, 6x6 transition matrices hbgen derived for the cumulative transition

probabilities describing the transition from onatstto the other during a time period. The values o
the cumulative transition probabilities have beenwkd from the data for 7x24x4 quarters of an hour
(one week).

DATA - OCCUPANCY TRANSITION MATRIX
-Kind of Apartment: single-family dwelling BE-BE  BE-BA BEKl  BELR  BEOT  BENH
-# tot. Persons: 102
_#tot. Active Person@ / BA-BE BA-BA BAKI  BALR  BAOT  BANH
-Places: bed/ bath/ kitch/ living/ other/ nh Vi KI-BE KI-BA  KI-KI KI-LR KI-QT KI-NH
-Places Code: BE/ BA/ KI/ LR/ OT/NH /| LR-BE  LR-BA LR-KI LR-LR LR-OT LR-NH
-Time schedule: the firstweek of January / . OTBE OT-8A OTKl OTIR OT-OT OT-NH
-Time{08:00 A M \
i \ NH-BE NH-BA NH-KI  NH-LR  NH-OT NH-NH
ABSOLUTE TRANSITION PROBABILITY BE->X !
i3
0 N OCCUPANCY TRANSITION MATRIX (BE)
bl
. 34 20 2 : 1 0]
TRANSITION o
ks s 0033 0066 0016 0000
)
s 0557 0885 0918
o
-] r e
BE-2¢ BE-gs e I
CUMULATIVE TRANSITION —’F\L,_.~I:I ITY ':.I: >X RANDOM NUMBER D<r<i
r< 0,557 Be-Be
0,557| <r< |0,885 . 328% Be-Ba
0885 <r< (0918 INA 3.3% BeKi
0918| <r< ] 6,6% Be-Li
<re ] 1,6% Be-Ot
<r 0% Be-Nh
BE-BE BE-BA BEX BE-U BEQOT  BE-NH '
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Figure 2-30: Schematic view of the Markov Chain koBarlo method for stochastically generating
occupancy.

A schematic view of the Markov Chain Monte Carlotihoel is shown in Figure 2-30. The following
steps are followed for each inhabitant for eacletstep in the simulation

the present occupancy state of each inhabitamtesined;

1) cumulative transition probabilities are calculabeded on time-use data;

2) the transition probability matrix is calculated;

3) arandom number between 1 and 0 is generated;

4) the new occupancy state is determined based ooldh&ccupancy state, the random number,
and the cumulative transition probabilities.

Following the above described procedure, occupamcyon-demand space heating can be simulated
for a complete year. Repeating this simulation wkult in a variation in the energy use for space
heating. An example resulting from this MCMC apmtos given in Figure 2-31.

Space heating on demand, 1 year,
n=35040 timesteps (0.25hr), 150 runs
T T T

0.2 |

Q0.1

0.05

0
6.95 7 7.05 7.1 7.15 7.2 7.25
GJ

Figure 2-31: Histogram of the yearly energy usedordemand space heating for a two working
person household resulting from the Markov ChaimdddCarlo method described above.

Figure 2-31 shows the variation in yearly energy ims on-demand space heating for a two working
person household. The variation in energy use ishmamaller than expected from the variation in
occupancy in the time-use data for two working perisouseholds.
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The MCMC method for simulating occupancy also amaplin the literature does not seem to be
appropriate for simulating the variation in occupam dwellings and on-demand space heating, Refs.
[64], [74], [97]. On the one hand, it is very umiit to generate extreme occupancy patterns by
applying this method (almost always present or @i)s©n the other hand, the transition probabditie
for moving from one room to the other are basedhentime-use data of many different respondents.
These transition probabilities are used to genetateoccupancy of an individual inhabitant in an
individual dwelling. Therefore, the generated oaugy will resemble an average occupancy as
contained in the time-use data.

An alternative Monte Carlo procedure for simulatthg variation in occupancy and on-demand space
heating is proposed as follows:

Random sampling of individual deterministic occupaprofiles of all inhabitants, derived from time-
use data;

1) Calculating the yearly energy use for space heatingn demand based on these profiles.
Repeating this simulation will result in a variation the energy use for space heating. An exansple i
given in Figure 2-32.

Space heating on demand, 1 year,

02 n=35040 timesteps (0.25hr), 115 runs
: T T T

o 0.1

0.05

GJ

Figure 2-32: Histogram of the yearly energy usdordemand space heating for a two working
person household following from the alternative kdoGarlo procedure based on sampling the above
described deterministic occupancy profiles.
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Figure 2-32 shows the variation in yearly energy o on-demand space heating for a two working
person household based on the alternative Monté @aocedure described above. In this case, a
larger and more realistic variation in energy wseoh-demand space heating has been predicted.

Action Based Models of Occupancy

Type of | Type of model | Statistics used Implemented| Validated Reference
behavior into  computer,

simulation

(software)
Occupancy Action based Markov chain  Yes Yes

A family apartment in a residential building is dsa&s an example to demonstrate the procedure to
apply the occupant movement model to a specifie tfpbuilding. This example is illustrative and the
input data are taken from experience.

Inputs

2) Determine the building topology.
The 2D plan of the apartment building is shown iguFe 2-33. There are 4 bedrooms, 1 living room,
1 kitchen and 2 restroom, indexed from 1 to 8;dbiside is indexed by 0. There are 9 spaces ih tota

<

—T—T— — —
Bedroom
A i
Bedroom
— | Bedroom . 1
Kitchen 3 Living 1
8 room
L
5 1
— c E
Rest Bedroom
— room 2
Rest-

6
L room J |_|
— 1 al

Outside 0

Figure 2-33.Plan of the residential building.

3) Determine the occupant information.

There are 5 occupants in the apartment: a coupdéioé workers living in the bedroom 1, a grandma
(retired at home) in bedroom 2, a son (middle stbtmlent) in bedroom 3 and a nanny in bedroom 4.
They move among the 9 spaces (i.e. all spacescaessible for each occupant). The number of
occupants for each bedroom is shown in Table 2-5.

Table 2-5. Number of occupants in each bedroom
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Room No. Number of occupants Room No. Number of occupants
Bedroom 1 2 Bedroom 2 1
Bedroom 3 1 Bedroom 4 1

1) Determine the time step and initial locations.
The time step used in the case is 5 min; an ocayptdme series of one day is comprised of 288
points. All occupants are in the outside spacat he initial time step.

2) Determine the movement parameters.

The daily schedule and events for the five occupant different except that they have lunch and
supper together at home. Here take the husbangaaspée, his schedule and events in the workday
are shown in Table 2-6.

Table 2-6. Schedule and events in a working day

Event Valid period Statistical index Expected value
Get up 6:30~7:30 Morning awake time 7:00

Go to office 7:30~8:30 Morning leaving time 8:00

Go back home 18:00~20:00 Night return time 19:00

Go to bed 23:00~1:00 Night asleep time 0:00

Long-run proportion of time and mean . ) ] ]
. L Proportion of time  Mean sojourn time
sojourn time in each room

In own bedroom 0.88 24 (2 hrs)
Walk around 17:00~7:00.

In other rooms 0.1 2 (10 min)

In outside 0.02 2 (10 min)

Run simulation
Run the simulation of movement process. The sinoridbr a workday runs 1000 times consecutively,
with different random seeds for each simulation.

Outputs

Both the locations and active state of occupantetery time step are generated. The location and
active state of occupant is respectively markedhieyspace index (from 0 to 8) and a Boolean value
(0- asleep, 1-awake). Accordingly, the hourly oa@ngy of the building and zone can be calculated.

1) Location of occupants

Figure 2-34 shows the generated time series oldb&tions and active states of the husband and
grandma in one workday. As expected, the husbamgtl)ip in the morning, and then go to work, 2)

stays outside for the daytime, 3) go back homéénedvening and stays at home until going to bed.
During the period of staying home, he stops in sw@aces (bedroom 1, living room 5, restroom 6,

bedroom 3 and outdoor) and stays in his own bedrmomost of the time. The grandma gets up later
and goes to bed earlier than the husband. Sheatéigsne during the day. However, she takes a walk
outside in the morning and has a siesta after ldiueith is located in the living room 5).
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Figure 2-34.The locations and active states of Ansband grandma.

4) Occupancy of building and zone

Figure 2-35 and Figure 2-36shows the change of pmdunumber in the whole apartment and
bedroom 1 over a workday, where the hourly occupaakes the mean of five-minute results. It can
be seen that (1) the trend of “going to the offckbol - working - lunch - working — getting off
work” in a typical workday for the couple and sanreproduced; (2) the total building occupancy
reaches a maximum or minimum gradually, rather gfarply under a fixed schedule; (3) during the
period of staying home, total apartment occuparegpk nearly conserved while varies due to the
movement of occupants (to outside), which means, ridationships of stochastic occupancy in
multiple zones are taken into account and makeotieipancy distribution in zones is closer to the
reality.

Besides, such a movement process changes for siranfation. Figure 2-37 shows the first three
runs’ results of bedroom 1's occupancy. It can densthat the occupancy of bedroom 1 changed and
differed for each day, which is understood as ramdoeveryday life.
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Figure 2-35. Hourly building occupancy over aFigure 2-36. Hourly occupancy in bedroom 1
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workday over a workday

30+————F—T—T—T—T—— ——————T—T—T
! ! ! ! ! 7707} 1st fUh ! !
254 e —eondrun

+3rd run

Number of occupant

Time of day
Figure 2-37.Bedroom 1's occupancy for the firsetiruns

In general, the stochastic occupancy over a typwatkday in a residential building can be
realistically produced by using the proposed model.

5.2 Heating

Average values model for heating

Type of behavior Type of model | Statistics usedimplemented Validated Reference
into computer
simulation
(software)

Heating Average values Yes Yes

By simulating possible daily routines of occupardasdata set of heating-related behaviors was
generated randomly. As heating behavior is infleeinoy and related to secondary behaviors such as
window opening, internal heat gains, DHW use, amd@nce, these factors were also considered. The
average values from the occupant behavior dateveset input into a computer simulation to generate
the HED. The same average values were input irgartbnthly balance method to obtain a HED to
validate the HED from the building simulation. Angparison of the results is seen in Figure 2-10
above [11].

Probabilistic models for the state of AC-unit for reating

Type of | Type of model | Statistics used Implemented| Validated Reference
behavior into  computer

simulation

(software)
Heating Probabilistic Akaike No No [82]
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Information
Criterion
Nagelkerkes
R2

Logistic
regression
analysis

Ref. [82] uses the Akaike Information Criterion @land Nagelkerkes?Rndex in order to develop a

multivariate regression model for the probability AC-unit usage for heating. By consequently

adding variables, which lead to a highériRlex and a lower AlC-value, they improved the eldit
to the data from an®Rndex of 0.04 for the univariate model includingt@oor temperature alone up

to 0.48 for the multivariate model. The final modletiudes in total 19 variables related to physical
parameters of the surrounding as well as indivighaahmeters such as the preference.

Deterministic models for the set-point temperaturdor cooling and heating with AC-unit

Type of | Type of model | Statistics used Implemented| Validated Reference
behavior into  computer
simulation
(software)
Heating Deterministic Linear No No [83]
regression
analysis

Ref. [83] applied the same procedure and presentslavariate regression model for the choice of

set-point temperature for heating in wintertime.

5.3

Cooling

Probabilistic models for the state of AC-unit for ®oling

Type of | Type of model | Statistics used Implemented| Validated Reference
behavior into  computer,
simulation
(software)
Cooling Probabilistic Regression | No No [32]
analysis
Cooling Probabilistic Akaike No No [82]
Information
Criterion

Nagelkerkes
R2

Logistic
regression
analysis
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Ref [32] calculated the probability of switching tire AC-units as a function of mean hourly outdoor
temperature.

Ref. [82] uses the Akaike Information Criterion @land Nagelkerkes?Rndex in order to develop a
multivariate regression model for the probabilitiy AC-unit usage for cooling. By consequently
adding variables, which lead to a highériRlex and a lower AIC-value, they improved the eldit

to the data from an®Rndex of 0.04 for the univariate model includingtdoor temperature alone up
to 0.48 for the multivariate model.

Deterministic models for the set-point temperaturdor cooling and heating with AC-unit

Type of | Type of model | Statistics used Implemented| Validated Reference
behavior into  computer
simulation
(software)
Cooling Deterministic Linear No No [83]
regression
analysis

Ref. [83] applied the same procedure and presentslavariate regression model for the choice of
set-point temperature for cooling in summertime.

Probabilistic models for the state transition of AGunits

Type of | Type of model | Statistics used Implemented| Validated References
behavior into computer

simulation

(software)
AC-usage Probabilistic Markov modeINo No [48]

Ref. [90] applied the Markov model to relate AC gis@o different time intervals of the day based on
the data from eight observed dwellings in Fukuakepnan. Ref. [63] presented a logit line for cooling
in mixed mode office buildings, but not for resitdiahbuildings.

Action based models for the state transition of AGnits

Type of | Type of model | Statistics used Implemented| Validated Reference
behavior into computer|

simulation

(software)
Cooling Action based Markov chain| Yes Yes

Air conditioning control behavior is used as anragée to demonstrate how to apply the procedure to
the present control action model for a specificetyd device. The behavioral patterns of turning-on
the AC and turning-off the AC are investigated &Chinese family with a split AC unit. This is a
‘part-space part-time’ air conditioning mode (sdguFe 2-38): (1) Turning-on the AC pattern is
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defined as “turn on AC if an occupant is in a roand feels hot”; the threshold value is 28.5(2)
The turning-off AC pattern is defined as “turn &€ if an occupant is out of the room”.(3) Adjusting
set-point pattern is defined as “using fixed sehtipthe set point temperature is 2&5

IndoorT ——OutdoorT ——AC power
35
- 1.4 ,
31 1.2 Turn on AC
29 1 Y
27 T 0s Turn off AC
T 25 kW t,
23 0.6
21 04
19
17 0.2 ?
Time
15 0
6-12 6-13 6-14 6-15 6-16
Time

Figure 2-38. Air conditioner operation: (a) indoand outdoor temperature, and AC power; (b) turn-on
and turn-off patterns

The system status inputs are zone occupancy andritdmperature; the outputs are turn-on/turn-off
actions and the states of the air conditioner. fieigR-39 shows the simulation results of air
conditioning actions. It can be seen that (1) theanditioner is turned off when the occupant kEsv
the room; (2) it is turned on when the occupaneenthe room and the indoor temperature is higher
than 28.8C; (3) the set-point temperature is 26.5 The simulation results reproduce the

characteristics of the real operation of air cdndr.
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124



54 Ventilation and window opening

Probabilistic model for the window state

Type of | Type of model | Statistics usedd Implemented| Validated Reference
behavior into computer|

simulation

(software)
Window Probabilistic Stepwise Yes/ No Yes/ No [39]
opening linear

regression

Window Probabilistic Regression | Yes (R) Yes [81]
opening Markov model
Window Probabilistic Regression Yes (ESP-r) Yes Humphreys
opening Algorithm

So far, there are only two published models regardine window opening behavior in dwellings. In
2005, the authors of Ref. [39] developed a lineagression model: a series of stepwise linear
regression analysis were performed on the datdeatify factors associated with open windows and
doors. The statistical analysis is focused on ifieng the variables that can be used to predictnva
residence will have one or more open windows orrsloo

The authors of Ref. [81] have recently developed@sfor window opening in a residential setting.
Their study uses the analysis of data from twoirtisimeasurement campaigns in residential indoor
environments in Japan and Switzerland. Calibrasind the verification were conducted for several
modeling approaches of varying complexity with exgpto the number of variables included in the
models. The previously developed models for occtgarifice window uses are related to the study
of Ref. [31] and Ref. [82]. In particular, they ted the Bernoulli process based on a single prtitbabi
(an indefinite repetition of an experiment that gare two alternative outcomes, 0 or 1) and a Marko
Chain model: , each model included a set of vaembétained on the basis of forward selection. The
combination of these distinct approaches resultsine types of models for the prediction of actions
on windows.

In the case of the Swiss dataset, the analysis wlemades the ability of carefully formulated

behavioral models developed from office environméata to reliably predict window usage in a
residential context and vice-versa. The same mogdelform less satisfactorily in the Japanese
residential database. From these results, it séleatssuch models require specific calibration ia th

case of buildings equipped with an air-conditionimit as was the case of the Japanese database.

Adaptive comfort temperatures are now well-estaklis concepts in which comfortable indoor
temperatures vary with the running mean outdoorptrature. Adaptive behavior applies to free
running naturally ventilated buildings where thecwgants have opportunities for adapting; i.e.
adjusting clothing, posture, windows, blinds, fats. Even though Humphreys’ algorithm [57] is for
window opening in office buildings, it is worthwahito highlight it in this review of existing models

was derived from analyzing extensive survey and riationship between the likelihood that a
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window is open and the indoor global temperaturg @nd outdoor air temperature ,{T) was
quantified by means of logistic regression. Thedaeins open algorithm has been implemented in the
building energy simulation software ESP-r to allemndow control within the airflow network of a
building model. The implementation of the algorithimESP-r is named the “Humphreys adaptive
algorithm” [57]. The window open behavior as reprged by the algorithm is shown to be more
sensitive to changes in building design paramdters a non-adaptive approach. It is suggested that
an adaptive algorithm will better represent humantwl of windows and will allow a more accurate
assessment of human thermal comfort conditions lamitting performance including summer
overheating and annual energy use. Once agairglgloeithm embedded in simulation software will
assist in the design of more comfortable and eneffigient buildings.

Probabilistic models for the state transition of wndows

Type of | Type of model | Statistics used Implemented| Validated References
behavior into computer

simulation

(software)
Window Probabilistic Markov mode| Yes/ No Yes/ No [7]
opening

In Ref. [7], the authors developed a logistic madétrring the probability of opening and closing a
window (a change from one state to another) seggrad determine the most dominating drivers for
each action.

55 Domestic hot water

Models for hot water usage based on average values

Type of | Type of model| Statistics used| Implemented | Validated Reference
behavior into computer

simulation

(software)
Hot water| Average Stepwise linear Yes/ No Yes/ No [40]
usage values regression
Hot water| Average Poisson arrival Yes/ No Yes/ No [16], [17]
usage values processes

Realistic load profiles for domestic hot water usth a time step of one minute for a one year pkrio
have been generated stochastically in Ref. [40fhim approach, four types of loads were used:tshor
load (e.g. washing hands), medium loads (e.g. distsher), bath, and shower. Probability
distributions have been defined for each type afllaluring the year, weekday, and day based on
domestic hot water use data from various studidwe distributions were used to stochastically
generate the load profiles.

A Poisson Rectangular Pulse (PRP) model for retimewater demand has been developed in the

1990s, Refs. [16] and [17]. In this model, the destial water demand is composed of rectangular
pulses having a specific intensity and duratioliveng various times a day. The frequency of water
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use follows a Poisson arrival process with a tirapesthdent rate parameter. The residential water use
times are distributed exponentially. The paramedes probability distributions of the PRP model are
determined from many flow measurements for variomsseholds; the parameters are specific for the
network used for measurements. It is difficult telate the parameters obtained via these
measurements to data such as household size, mggeoof end-use. Consequently, the model is
more descriptive than predictive. Analogous to BiRP model, Ref. [4] describes a model based on
the (stochastic) Neyman-Scott clustered point gece

Probabilistic model to determine the hot water usag

Type of | Type of model | Statistics used Implemented| Validated Reference
behavior into  computer
simulation
(software)
Hot water| Probabilistic Multiple Yes/ No Yes/ No [47]
usage regression
Hot water| Probabilistic Multiple [53]
usage regression
Hot water| Probabilistic Fitted Yes/ No Yes/ No [11], [13]
usage probability
distribution
Monte Carlo

In the eighties, Ladd et al. [47] presented the EfRectric Power Research Institute) model: a
behavioral model containing a set of multiple regren equations predicting the behavioral structure
of hot water use during the day; weekdays and wekkays are considered separately. In this model,
hot water use is regarded as a function of vanargbles, such as number of household members,
age, unemployment of household members, and watgehdescription. In this study, only electric
water heaters have been considered (gas-fired \watgers have not been considered). The study is
based on a sample of 110 households (all of themmgavashing machines and dishwashers).

Lutz et al. [53] presented an expansion of the ERRUbel in the nineties. In this study, not all
households owned washing machines and dishwagheaddition, “households consisting of seniors
only” and “households not paying for hot water” eaonsidered. Due to a lack of data on hot water
use for households with gas-fired water heaterssipte differences in hot water uses associateld wit
water heating equipment type were not addressed.

Recently, a more detailed stochastic end-use vaEierand model has been developed for predicting
water use patterns having a short time scale (@nscand small spatial scale (residence level), see
Refs.[11] and [13]. The model is based on stasiftitata of users and water end uses, such as the
number of people per household, age, frequencysef duration/intensity of a water use event, and
occurrence over the day. Eight types of water esésihave been used: shower, bath, washing
machine, dishwasher, kitchen tap, bathroom tagsideitap, and WC. Fitted and assumed probability
distributions for the frequency, duration, intepsénd time of the event for each type of water esel

are used to stochastically generate water userpati®lonte Carlo). This approach is based on
statistical data on occupants and water using ewgnp in the dwelling; this data will be differemtrf
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different countries. An example of measured arntddiprobability distributions for shower duratien i
shown in Figure 2-40. A complete list of probailitistribution functions for frequency, duratiomda
intensity for various residential water end useshiswn in Figure 2-41. The simulated residential
water use patterns compared well with measuredrwatepatterns.
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Figure 2-40: Probability distribution for shower dation in the Netherlands: measured data (bars),
fitted distributionsy? (circles), and lognormal (crosses). See Ref. [11].
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End-use type / subtype Frequency (day™) Duration Intensity (L/s)

) pdf il par ! pdf
Bathtub 120 litres 0.044 Poisson 10 min N.A. 0.200 N.A.
(fixed) (fixed)
Bathroom Washing and 4.1 Poisson 40 s Log- 0.042 Uniform
tap shaving normal
Brushing teeth T 15s
Dish Brand and type 0.3 Poisson Specific dishwashing pattern (4 cycles of water
washer entering, total 84 seconds, 0.167 L/sec =14 L)
Kitchen tap  Consumption 12.6 Negative 16s Log- 0.083 Uniform
Doing dishes binomial 48 s normal 0.125
Washing hands (r=3. T 1ss T0083
Other p=0.192) = 375 = 0083
Outside tap ~ Garden 0.44 Poisson 300 s Log- 0.1 Uniform
Other 155 normal
Shower Normal 0.7 Binomial 8.5 min' 7 0.1427 NA
Water saving type 0.123 (fixed)
Washing Brand and type 0.3 Poisson Specific washing pattern (4 cycles of water
machine entering, total 5 minutes, 0.167 L/sec =50 L)
WC 6-litre cistern 6.0 Poisson 2.4 min® N.A. 0.042 N.A.
9-litre cistern 3.6 min (fixed) (fixed)

Figure 2-41: Probability distributions and averagesfrequency, duration, and intensity for various
types of residential water end uses in the NetheldaSee Ref. [11].

Agent-based models of hot water usage

Type of | Type of model | Statistics used Implemented| Validated Reference
behavior into  computer,
simulation
(software)
Hot water| Probabilistic (?)| Stepwise Yes/ No Yes/ No [9]
usage linear
regression

Agent-based models can simulate the influencegblaple with different water use behavior have on
each other. This influence will result in a chanf§evater use behavior and energy use as a funofion
time. See e.g. Ref. [9]. In this reference, thyge$ of occupants are defined: High Energy Conssimer
Medium Energy Consumers, and Low Energy Consuniars.to the lack of literature on actual rates
of influence, the authors assumed values for thates (a sensitivity analysis is to be performed in
future work). Presently, it is assumed that Low fggeConsumers have the most effective influence
through promoting green principles; the High Ene@pnsumers’ have an effective, however lower,
influence; and the Medium Energy Consumers haveldhest influence. The initial number of
occupants has to be defined for each category.nitdel then calculates the time evolution of the
number of occupants for each category. After a kimg, all occupants became low energy users (due
to the largest influence rate for the category [Ewergy Consumers).
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Agent-based models are also able to evaluate thetadf market penetration rates of water-saving
techniques, economic developments, and policy simEnabout water use as a function of time, see
e.g. Ref. [19].

5.6 Electrical appliances / lighting

Deterministic models for electricity consumption

Type of | Type of model Statistics usedImplemented Validated Reference
behavior into computer
simulation
(software)
Electrical Deterministic Linear Yes (Yes) [49], [38]
appliances regression
(including analysis
lighting)
Lighting Deterministic Yes (Yes) [49]

Models of residential electricity consumption haween developed at Aalborg University in 2010,
where data from two Danish cities, an island, amal measurement projects (the Comfort Houses in
Vejle, see Ref. [49], and Energiparcel in Tilste $®ef. [50]) are used to create profiles for reati
consumptions (sum of all months equals 100) andetermine if specific seasons are present, Ref.
[38]. The models can be used as the basis for ladileg expected electricity use profiles.

In Figure 2-42, the derived seasonal distributisrshown. It is seen that the number of seasons
necessary to describe the pattern turned out tfole as indicated by different colored bars. It is
visible that consumption is relatively high in thénter and becomes gradually lower as the days
become longer and warmer. The months where thesloglectricity consumptions are observed are
June and July.
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Figure 2-42: Seasonal investigation of electricaéegy consumption in Denmark. See Ref. [38].
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The electricity consumption profiles are shown igufe 2-43 and Figure 2-44, where groupings of
“workdays” and “not workdays” are conducted. Thigsna result of an investigation made on 4 houses
from Energiparcel in Tilst (energy renovated hoysesl 3 houses in Skibet in Vejle (passive houses).

Workdays

——jan+dec
~——feb+mar+oct+nov
4,00
/ apr+may+aug+sep

—jun+jul

Relative consumption

2,00

1,00

0,00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

Figure 2-43: Relative electrical energy consumptilay-profiles for “workdays” divided into four
seasons. See Ref. [38].

The profiles show that electricity is used the téamm O to 6 and use is somewhat stable from B6to
(working hours). From hours 16 to 18, a significamtrease in consumption is visible, which is
believed to be a result of people coming home fieank and starting to make dinner. The daily
pattern does not seem to deviate much betweenrseasactual electrical energy consumption does,
(see Figure 2-42).

For the “not workdays”, the same tendencies aresrvlesl. From around hour 6, an increase in

consumption is visible and is again visible at ht@r During midday, the level of consumption is
higher, which results in a lower peak value at dimiime in the evening.
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Figure 2-44: Relative electricity consumption dagfpes for “not workdays” divided into four
seasons. See Ref. [38].

Similar energy use profiles have been developeaffiificial lighting, [86]. Figure 2-45 shows resall
obtained from measured lighting energy use in 1BOrésidences in half-hour intervals. It shows how
the lighting demand profile during a typical weekahanges with season.
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Figure 2-45. Daily lighting profiles (monthly aveyes, weekdays) at different times of the year
(averaged over 100 homes)—showing demand in Jashéd grey line), September (solid grey line),
December (solid black line) and March (dashed bliaok), Ref. [86].

The profile in Figure 2-45 falls into four discreperiods during which occupant behavior remains
relatively similar for each half-hour — nighttimejorning peak, daytime, and evening peak. By
assuming an underlying function for each periochuah trends may be stored for the parameters that
describe each of these functions. The morning gealexample, was modeled by a Gaussian function
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in terms of peak height, width, and peak time. Eening peak was modeled by a more intricate
function, which included the description of leadingd falling edges. Further relationships were
investigated to model the annual trends for eacthe$e parameters. For example, the leading edge
parameter for the evening lighting peak was fouadbé a sine wave, whilst the trailing edge
parameter was constant throughout the year. Thelalsed model was implemented in a software tool
that also allowed representation of diversity bypkaying scaling factors for differences in occupgnc
income, lifestyle, etc.

Probabilistic models for the electrical energy consmption

Type of | Type of model| Statistics used Implemented | Validated Reference
behavior into  computer

simulation

(software)
Electric Stochastic Yes Yes [94][971[98]
appliances
Lighting Probabilistic Markov model| Yes No [60]

A high-resolution stochastic model of multiple etaxty-dependent activities in households
(including lighting) and the associated electricdigmand has been developed in Ref. [94]- [98]. This
model produces activity patterns for individual wgants as well as the domestic electricity demand
based on these patterns. The activity patternsbased on a nine-state Markov chain (absence,
sleeping, cooking, dishwashing, washing, TV, cormaputwudio, and other). The Markov chain
transition probabilities are based on extensive diste measurements between 2005 and 2007 in
monthly or annual periods in 14 households, ané-tise data for five of these households. Based on
these transition probabilities, at each time steihé calculation a stochastic process determiréshw
activity will take place. Using a relatively simptmnversion model, generalized load patterns for
various electricity end-uses are related to thiwiies to calculate the power demand for the esdsu

The occupancy model of the Lightswitch model (H60]), is a Markov model consisting of three
occupancy probability functions as a function ofdiof day; five-minute bins have been used.

It uses a simulation algorithm that predicts thghting energy performance of manually and
automatically controlled artificial lighting andibtl systems in private and two-person offices. tapu
are annual profiles of user occupancy and workelduminances. These two inputs are combined
with probabilistic switching patterns developed fitwree different situations: arrival, temporary
absence, and departure. Switching patterns havedsré&/ed from observed data.

Figure 2-46 illustrates the Lightswitch-2002 algtmm for artificial lighting and blinds. Figure 2-47
shows the measured switch-on probability functions.
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Figure 2-46. The Lightswitch-2002 algorithm forléc lighting and blinds.
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Figure 2-47. (a) Measured switch-on probability étinon upon arrival [35]. (b) Intermediate or
within-day switch-on probability for electric lighg [71]. (c) Measured switch-off probabilities for
different times of user absence for a lighting exystvithout controls, with an occupancy sensor [67],

and for an indirectly dimmed lighting system [71].
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5.7 Cooking

Cooking activity and energy use models

Type of | Type of model| Statistics used| Implemented | Validated Reference
behavior into  computer
simulation
(software)
Cooking Probabilistic Markov model No Yes [76]
Cooking Average No Yes [94]
values

Cooking activity profiles (probability as a funati@f time-of-day) have been derived [76] based on
data derived from the UK 2000 time-use survey (IR#8]). This database is based on thousands of
single day diaries recorded at a ten minute resoiutThe profiles show that expected peaks in
cooking activity occur around meal times, but cogktan occur at any time of the day.

Cooking power demand profiles have been deriveRieh [94] based on the Swedish time-use data set
TU-SCB-1996. This data set contains data from 4&bgns in 169 households recorded during an
autumn period of five months at a five minute raioh. The modeled cooking power demand profile
corresponds well to the measurements, but the mgepeak for the cooking demand, which
corresponds well in magnitude, is predicted one o early.

5.8 Sun shading

Literature research reports regarding sun shaditly respect to housing and energy could not be
found. Therefore, the following descriptions aredzhon a model which was developed in the context
of office buildings. As an example for an approadhmich considers the usage of blinds, a manual
lighting control model is described below in whitte usage of external venetian blinds is integrated
Reinhart [69] developed this model based on gatheéata during a pilot field study in 10 rooms in an

office building in Germany. The investigation oftimanual control of venetian blinds was a small

part of his thesis focusing on simulation studied analyses concerning daylight and lighting cdntro

to predict artificial lighting usage in offices.

Reinhart explored the correlation between solaepation depth and the mean blind occlusion for the
time periods when employees were present in thfites. The tendency to close blinds increased
when direct sunlight was above 50 \{rtseeFigure 2-49. Biilow-Hiibe [18] found in her research
that employees are more likely to operate blindemthere are sun patches in the room.
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Figure 2-48: Correlation of blind occlusion and aopenetration, [69], p. 82].

Model for sun shading

Type of | Type of model| Statistics used| Implemented | Validated Reference
behavior into  computer
simulation
(software)

Blind usage probabilistic, | logistic Yes No [69][76]
regression

Blind usage deterministic;| Stochastic Yes No [70]
probabilistic | (decision
outcome);
algorithm
inputs of
annual profiles
of user
occupancy and
work plane
illuminances
(5 minute time
steps
throughout theg
year)

Observed patterns of user behavior in an officddimg in Germany provided information for the
model. The adjustment of blinds is incorporatethm extended version of the LIGHTSWITCH 2001
Model, (sed-igure 2-49.
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Figure 2-49: LIGHTSWITCH 2001 Model with integratashtrol algorithm for blinds, [[69], p. 26].

Figure 2-50shows a part of the LIGHTSWITCH 2002 Model for mahlighting and blind control
which is based on a stochastic and a dynamic daadgorithm [70]. One of the benefits is to support
lighting designers for energy saving analysis camiog electric lighting and blind control concepts.
is applicable for private or two-person officesh@tadvantages are:

1) the algorithm imitates the individual control deeciss and is assumed to be closer to real
behavior,

2) the algorithm simulates variations in individuahtl| behavior (observations from field
studies).
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Figure 2-50: Control algorithms for manually conlied and automated blinds. Close blinds comes
along with fully lowered blinds; the smallest sdaigles are 00, 450 and 750 is chosen under which
direct sunlight is fully blocked, [70], p. 28].

The author stresses the limitations as aspectshwéiie not covered by the model, e.g. thermal
considerations or privacy needs in dense settings.

Reinhart and Wienold [72] investigated occupantvedr patterns with respect to energy issues. They
presented an analysis simultaneously considerimpiandaylight availability, visual comfort, and
energy use, combining annual daylight glare prdtlgrofiles with an “occupant behavior model in
order to determine annual shading profiles andatisamfort conditions” [[72], p. 410].

Calculations are based on two extreme oppositepuséfes:

1) type passive user = preference of daylight whilgiding glare; closes blinds once the index
DGP (Daylight Glare Probability, see [99]) at therlaplace is more than 40%,
2) type active user = avoids direct sunlight; clo$eshlinds once the sunlight is above 50Wh/m2.

“The ‘true occupant behavior is likely to lie sormeve in between these two extremes” [See [72], p.
414).
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Based on five scenarios for blind usage and uger, tyalculations of energy loads and greenhouse gas
emissions based on hourly schedules were carriedoousing on the electric and external blinds
statuses (seEigure 2-5). The findings show that besides comfort, usagsuof shading is energy-
related. Results showed that external blinds apéicgble to reduce cooling use but, on the othedha
increases the heating load. The integration ofreatesenetian blinds lowers energy costs by 6% and
carbon emissions by 10% for passive users. Foadkige user, “yes or no” changes with respect to
external blinds could not be found.

End Energy Use
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B Chiller (Electricity)
125 - Lighting

Office Equipment

100
75
50 -
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Annaul Energy Use [kWh/m?yr]
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(active use) | (passiveuse) active use active use (always
(avoiddirect = (avoidglare) lowered)
sunlight)

Figure 2-51: Analyses for annual energy use in acspfor different blind control strategies and
occupant behavior patterns, [72], p. 392].

The above described models which focus on the ushbénd control give examples for interesting
approaches. A worthwhile topic for further reseanaiuld be to determine if these approaches can be
applied to behavior patterns in private housinguAdamental characteristic of the office environinen
is a predominantly extraneous operation of devitesh as sun shading; automation is mostly done by
the maintenance personal.

Besides the avoidance of internal heat gains, anahpect is the problem of glare with respect to
comfort issues at the workplace. This is especiatigortant for employees working at desks near
windows. The issue of glare may not play a maj¢e e housing. Besides a variety of restrictions in
comparisons of working and private settings, it banargued that some behavior patterns might be
similar up to a certain degree. Behavior, like Hemgdshades and blinds, are often learned andddain
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and become habits, in terms of preferences likanigaa view to the outside. Nevertheless, in the
context of residential buildings, behavior pattemgght show greater variation than in the office
context due to a bundle of factors such as lifestginvironmental consciousness, or the linkage
between behavior and private energy costs. Yatdhlisage models are based on small humbers of
human subjects, thus, further validation of the el®ds needed as well as further investigation into
the relationship of blind usage and energy in essidl buildings.

0. Conclusions

Average and deterministic models are often baseassnmptions, not on data, but could be based on
data as well. At best, they represent e.g. theageefor window opening frequency. Implementing
such values into simulation algorithms, the outcdsna single value for each assumed/ derived type
of behavior. In order to show variety (of behavjdygpes of occupants, ...) various simulations have
to be run once each for each model.

Probabilistic models could be based on assumptsnsell, but in practice, they are mainly based on
data. They are representing probabilities of a WehaVarious types of occupants can be represented
either by different models or by variables relatedthe aspects modeled within one model. The
outcome is a distribution of behaviors/ energy deasaand the variety is shown by results of differen
models or the distribution of one model.

Agent-based simulation models are used to quawmgtatstudy multi-agent systems in which agents
are autonomous, and interact with each other agidéhvironments. The agents may be very different
objects varying from individual human beings to paments of energy networks. The agents are in a
specific state at a specific time during the sirtiafa Due to interactions with other agents theesta
may change over time. An agent-based model forlaimg domestic user behavior can be used in a
co-simulation with, e.g. a building model.

Action based models provide a new approach fordmgl occupancy simulation. Compared to the
“fixed schedule” method, this model considers thedomness that result in the uneven and non-
synchronous change of occupancy in space and Gompared to other random process methods, this
model keeps the time and space relevance of occypand is more practical due to the great
reduction of inputs.

Following the description of the modeling approaghexamples for energy-related behaviors found in
the literature were presented together with thaseeldped within the framework of this Annex. A
broad range of models are shown, however, onlyHfave been implemented into simulation software
for energy demand prediction. Furthermore, all ¢ho®dels were — if at all — validated only intetyal
and not on external data (see Ref. [81] for suchmproach to window opening behavior). Therefore
no conclusion can be drawn on the quality of theettgped models.

6.1 Recommendations for the choice of models

The choice of model depends strongly on the oljeanif the simulation, but also on the software
chosen or available.

140



As presented in Chapter 3, the occupant behaviorbeamodeled through schedules or diversity
profiles (Type A), stochastic models (Type B), ayeat-/action based models (Type C). The
recommended choice of a certain model type dependgarious factors as described in Chapter 2.
Table 2-7 and Table 2-8 summarize the preferre@iehmodels for a single building and a group of
buildings with respect to the objective of the diation, following the objectives of Table 2-1 and

Table 2-2.

Table 2-7.Preferred behavior models for a singlédouog.

Design Commissionin Operation
Conceptual| Preliminary Final Initial On-going Control
Preferred
behavior A A, Bor C* A (B or C¥) A, B or C* A,BorC* A, BorC*
model:

* The required model depends on the sensitivity of the investigated building performance indicator to occupant behavior.

This sensitivity depends on the performance indicator itself (e.g. compare comfort indicators to energy load indicators) and

on various building related aspects, among others, building function and user type (e.g. compare schools to offices),

building/system concept (e.g. slow responding to fast responding systems) and the degree of which the occupants are able

to interact with the building (e.g. operable windows or no operable windows) [34].

Table 2-8.Preferred behavior models for a groupaifdings.

Design Commissioning Operation
Conceptual | Preliminary Final Initial On-going Control
Preferred
behavior A A A A A
model:

The possibility to use a certain model also depemdthe software used. Table 2-9 gives an overview,
which software is capable of handling probabilidtiactions. Furthermore, not all simulation tools
generate all necessary variables needed for sortteeahodels presented in Chapter 4, e.g. Energy

Plus does not calculate G@oncentrations needed for some window opening taode

Table 2-9.Simulation software characteristics.

Software Handling Random number | Limitations/
probabilistic generation comments
functions

Energy-Plus No No Only fixed

schedules
possible, engine
to combine with
MatLab in
progress

IDA-ICE Yes Yes

ESP-r Yes Yes

TRNSYS Yes Yes
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6.2 Proposed methodologies for future model developmesnt

Future model developments are meaningful just Bedhey are accompanied by their validation on
external data. This necessitates case studiesablatio perform such validation. The final repdit o
Sub-Task C presents the outlines of existing studielyzing the total energy use in buildings. Gill
them indicate whether occupant behavioral variablesincluded in the database and whether the
database can be used by others.

In the following a list of recommended variablegarid to be relevant is given for researchers who are
planning new case studies.

Action modeled Type of model/ Application Recommeadariables
General All Electricity consumption

Energy use (gas, oil, wood, ...
Heating-/Cooling control} Average values Family size, dwelling
window opening properties, climatic data
Heating-/Cooling control} Stochastic Indoor and outdoor data |(at
window opening least temperature)

(IAQ)

Personal characteristics/

preferences

Data acquisition using citizen science & crowd soging

Collecting data for energy-related behavior is ticoasuming, as both a large sample set and a large
number of parameters are used in energy use asalyse time required to collect energy-related
occupant data may be decreased by directly invgltite occupants who are residing in the study
homes through citizen science.

Citizen science is defined as “scientific actigtism which non-professional scientists volunteer to
participate in data collection, analysis and digeation of a scientific project” [30]. According to
Cohn, citizen science as a means of data colletiz@nbeen in use for over a century [30]. There is
some debate about the definition of citizen scieasemore recent definitions include interactiod an
use of the internet together with information anthmunication technologies as the primary interface
and data collection platform, and thus represestientific application of crowd sourcing [100]. To
date, citizen science has been an approach nofamfjathering data for various research projdmis,
also to involve those who may directly benefit fraine results of the study at hand. The amount of
data that can potentially be collected is very dargs the number of involved parties can also grow
exponentially. Newman et al. even propose a wek¢asta management structure to handle large
data volumes [59].

6.3 Suggestions for future work

Whole building simulation model outputs are curhemiften singular values, often leading to false
confidence that estimated building energy consumptvill match simulated results. A range of
estimated energy consumptions integrating highcé&pand low energy consuming behaviors can be
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determined by integrating the results of various-step models such as average, agent-based, or
action-based models in order to represent occupehavior in greater detail in building energy
simulations. The range of values can be appligatagide various building energy use scenarios such
as those needed for energy certificates, largee sbadrgy models, or long-term energy predictions.
When used for the energy certificates for individualdings, the energy use scenarios may be wsed t
predict the impact of their own energy use decisitmthe home and building owners and building
occupants.

Building users adapt their energy-related behatdochanges in their local environment including
changes in building technologies. Based on colteitdd data from longitudinal studies, energy use
models can be built representing the adaptaticrcofipants at different stages to changes in bgjldin
services and building quality resulting from thefmemnovations. This behavior may also be referced t
as “learning behavior”.

Current energy use models mainly concentrate osifiess as usual” scenarios. Dynamic occupant
behavior models may also be applied in energy smations for unstable energy supplies or energy
disruptions caused by natural disasters to prdtietrange and impact of individual conservation
measures over short and long time periods.

The introduction of new construction methodologéesl building technologies may incur a higher
probability of error in the design, constructiondacommissioning phases of a building than follayvin
traditional building practices until the technolegibecome common practice. Errors in the phases
prior to occupancy can potentially affect the olteteermal comfort in the buildings and effectivese

of occupants to modify their surroundings to mdsetirt comfort criteria while meeting a building’s
energy use targets. Thus, risk assessments mayofguated considering various scenarios of
construction and installation defects and the irdatemedial, maintenance, and operation costs in
conjunction with the range of occupant responsesdet both comfort and energy criteria.

Although studies have been conducted for occupsigfaction/dissatisfaction and occupant behavior
in residential settings, further research into ¢benbined impact of design decisions, commissioning
settings, and operation/maintenance decisions enmdd comfort and occupants’ wellbeing may
provide further insight into the actions occupaate to adapt to their surroundings.
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