Thermal Energy Storage (TES) Applications
Integrated Strategy Enables Impactful Innovation
Materials to Components & Systems for Thermal Energy Storage in Buildings
Model: 3-D transient model to predict the performance of the material.

Experiments: New experimental facility to characterize the performance of bulk TES materials.

Validation: Validated model predicts the response accurately.

Thermal Cycling: Specific energy throughput calculated over cycles.
HVAC-Integrated Composite Phase-Change Material (PCM)

Materials characterization
Develop and characterize high-conductivity composite phase-change materials

Heat exchanger and HVAC system design
Model and design thermal storage heat exchangers and systems

Prototype characterization
Build and characterize HVAC-integrated thermal storage

Energy and demand analysis
Evaluate new thermal storage using HVAC system and building modeling

Expanded graphite

nm to μm scale

~100 cm
Thermal Resistances and Model Comparison

Simulation results agree with the measured module temperatures.
Tunable TES & Thermal Switch for Smart Building Envelopes

Multi-physics multi-scale modeling
Demonstrate maximum potential of using tunable thermal energy storage and thermal switch to support grid flexibility

Controlled thermal switch
To vary thermal resistance

Dynamic tunability in solid-state PCM
Comb-branch Micro block Polymer
Salt Hydrate/Graphite PCM Matrices

Porous Expanded Graphite
Host matrix for PCM with high specific area and nano/micro porosity

Hydrophilic Surface Modification
Surface modification to enable loading of hydrophilic PCM into hydrophobic graphite

Improved Wetting
Improved wetting and low contact angle of PCM on porous graphite surfaces

Lattice Matched Nucleating Agents
Incorporation of lattice matched nucleating agents for supercooling reduction

PCM phase change composite
High thermal conductivity, high energy density PCM composite
Thermal Diodes: Directional Heat Transfer and Thermal Management System

Forward Heat Flux
Reverse Heat Flux

Taken from HEATER Big Idea Presentation.
Ravi Prashant LBNL
Switchable/Tunable Thermal Conductivity of Colloidal Nanocrystals

Time Domain Thermal Reflectance
Thermal conductivity measurement for colloidal nanocrystal thin films

3-Omega Method
Thermal conductivity measurement for bulk, thin film and powder

Switchable Thermal Conductivity
Study the influence of different type of ligands and Cores on thermal conductivity

Tunable solid-solid Phase Change
Study the influence of core+ligand+bonding on phase change behavior
Thank You

www.nrel.gov